
Improving the Execution of KDD Workflows Generated
by AI Planners

Susana Fernández, Rubén Súarez, Tomás de la Rosa, Javier Ortiz, Fernando Fernández, Daniel Borrajo1

and David Manzano 2

Abstract.
PDM is a distributed architecture for automating data mining

(DM) and knowledge discovery processes (KDD) based on Artificial
Intelligence (AI) Planning. A user easily defines a DM task through
a graphical interface specifying the dataset, the DM goals and con-
straints, and the operations that could be used within the DM process.
Then, the tool automatically obtains all the possible models that solve
the task by combining the different KDD actions. The models are ob-
tained by the execution of workflows in a DM engine. In turn these
workflows are automatically generated using an state-of-the-art AI
planner. Since the number of potential KDD workflows that solve a
DM task can be huge, PDM allows the user to set up some quality
criteria (accuracy, execution time, . . . ) to prune and rank the space
of workflows. These criteria can be used when planning to guide the
search process towards good workflows. This requires to model the
effects that each KDD action has on the criteria. The first versions
of the PDM Tool included estimations made by experts, and then by
a machine learning module that improves them through the analysis
of execution of the generated worksflows in different datasets. This
paper presents our current work on the PDM Tool for improving the
estimations on those values, based on a more fine grained analysis of
results.

1 Introduction

Data Mining (DM) and Knowledge Discovery in Databases (KDD)
is a very dynamic research and development area that is progressing
constantly. Recently, researchers are defining the third generation of
DM and KDD systems. The first generation of DM systems support
a single algorithm or a small collection of algorithms that are de-
signed to mine attribute-valued data. Second generation systems are
characterized by supporting high performance interfaces to databases
and data warehouses and by providing increased scalability and func-
tionality. And the emerging third generation systems should be able
to mine distributed and highly heterogeneous data found across the
network of computer systems and integrate efficiently with opera-
tional data/knowledge management and DM systems. This implies,
among other things, the implementation of DM and KDD tools to
enable the construction of KDD workflows (representing potentially
repeatable sequences of DM and data integration steps) [18]. Such
tools should be built on the basis of standard languages and available
state-of-the-art technology.

1 Universidad Carlos III de Madrid, Leganés, Spain, email: su-
sana.fernandez@uc3m.es

2 Ericsson Research Spain, Madrid, Spain,
email:david.manzano.macho@ericsson.com

At a high level, there are four main elements to define in the KDD
process: the training data (obtained by selecting, pre-processing, and
transforming the initial dataset), the model representation formalism,
the learning algorithm, and how to evaluate the model. The number
of combinations of those four elements is huge, since there are many
different techniques appropriate for each phase, all of them with dif-
ferent parameter settings, which can be applied in different orders.
Thus, the KDD process is sometimes seen as an expert process where
DM engineers transform original data, execute different mining op-
erators, evaluate the obtained models, and repeat this process until
they are satisfied. The complexity of this combinatorial process sug-
gests using automated approaches that are able to generate poten-
tial useful workflows and then execute them appropriately. Precisely,
Automated Planning (AP) technology has become mature enough to
be useful in applications that require selecting and sequencing ac-
tions [11], as it is the case of generating KDD workflows.

PDM is a tool for automatic planning of KDD workflows based on
these ideas [8]. PDM describes KDD operations in terms of AP by
defining a planning domain in PDDL (Planning Domain Definition
Language) that is considered as the standard language in the planning
community [9]. It uses another standard, the DM standard language
PMML [12], to describe KDD tasks. It receives as input a KDD task,
specified in a PMML file. The PMML file is automatically translated
into a planning problem described in PDDL. So, any state-of-the art
planner can be used to generate a plan (or plans), i.e. the sequence of
KDD actions that should be executed over the initial dataset to obtain
the final model. Each plan is translated into a KDD workflow and it is
executed by a machine learning engine. In our case, we employ one
of the most used DM tools, WEKA [21]. In WEKA, workflows are
described as files with a specific format, KFML, and datasets are de-
scribed as ARFF (Attribute-Relation File Format) files. The results of
the KDD process can be evaluated, and new plans may be requested
to the planning system. An important characteristic of PDM is that it
is a distributed architecture where each module can be executed in a
different host. Thus, in combination to the use of standard languages,
it makes it a modular architecture, so it is possible to substitute any
of its components. For instance, we could change the DM tool or the
planner. We would only have to adapt the translator of plans, to deal
with the input requirements of the new DM tool.

PDM represents each common KDD operator as a planning action
in the PDDL domain with its preconditions and effects. The effects
include estimations on the variations of the desired mining results, as
execution time, accuracy and errors, or comprehensibility. In a first
approach, these variations were initially set to a value estimated by
an expert. But, when compared with real values obtained by execut-
ing WEKA over different datasets, we saw that those estimated val-



ues differ from the real ones. So, we enhanced the PDM architecture
by integrating machine learning techniques to improve the KDD by
planning process. However, the learning was performed considering
the whole KDD process, i.e. PDM obtained the models and the total
mininig results for each training DM task without distinguishing be-
tween the particular effects due to each KDD action. In our current
work that we describe in this paper, we are separating the execution
of pre-processing actions from classification/regression actions, so
that we can learn better predictive models of execution of KDD ac-
tions. In parallel, we are also improving the features used for learning
the models.

The paper is distributed in the following way. Section 2 presents
the overall PDM architecture. Section 3 the learning component as
it is actually implemented, i.e. considering the whole KDD process.
Section 4 describes some initial experiments on the original PDM
architecture. Section 5 explains current work on the PDM tool. Sec-
tion 6 presents the related work. And, the last section draws the con-
clusions and suggests future work.

2 The PDM Tool

This section summarizes the PDM Tool. More details of the architec-
ture can be found in [8]. Figure 1 shows the PDM architecture. The
PDM Tool is composed of four modules: Client, Control, Datamin-
ing and Planner; each one may be executed in a different computer
connected through a network. We have used the Java RMI (Remote
Method Invocation) technology that enables communication between
different programs running JVM’s (Java Virtual Machine). The plan-
ner incorporated in the architecture is SAYPHI [6] and the DM Tool is
WEKA [21]. However other DM tools could have been used. Also,
any other planner that supports fluents and optimization metrics may
be used too.

The Client module offers a graphical interface that provides ac-
cess to all the application functionalities. Using the interface, a user
generates a PMML file from a high level description of the DM task.
Then, the Client module sends the PMML description to the Control
module. At the end of the execution, it receives the results in a file.

The Control module interconnects all modules. It performs some
translations in order to provide the data to the rest of modules in the
correct format and update the learned values in the PDDL problem
file. The translations needed are: from PMML to a PDDL problem,
PMML2PDDL; and from a PDDL plan to KFML, Plan2KFML. The
input to the module is the DM task coded in the PMML file provided
by the Client module, the dataset and a file with planning informa-
tion provided by experts. First, the PMML2PDDL translator generates
the PDDL problem file from the PMML file with the information
provided by experts. Then, the module checks if there are learned in-
formation for the planning domain. If so, the PDDL problem file is
updated with the learned information; otherwise the module does not
modify the PDDL problem file and continues the execution using the
expert knowledge.

Then, the planner is executed to solve the translated problem. The
returned set of plans is translated to several KFML files. Finally, the
DM Tool executes every plan in KFML format. The result is a com-
pressed file containing a set of directories, one for each plan. Each
directory contains the model generated by the DM Tool, the statis-
tics related to the evaluation of the model, the plan generated by the
planner, and the corresponding KDD workflow in KFML. Once the
module has the information provided by the execution of all plans, it
may perform the learning task in order to obtain more accurate values
for the PDDL problem files for future executions.

The Datamining module permits the execution of DM tasks in the
WEKA DM Tool through Knowledge Flow plans. It can obtain the
model output and the statistics generated as a result of the Knowledge
Flow execution. The inclusion or removal of ARFF files are managed
by the user through the options offered in the user interface. The
input to the module is a KFML file and the output is a compressed
file that contains the model generated and the statistics related to the
evaluation of the model.

The Planning module receives the PDDL problem file generated
by the Control module and uses the PDDL domain file, which has
been previously defined for the PDM architecture. The PDDL do-
main contains the generic actions that can be executed by a DM tool.
Each action specifies:

• Arguments: the parameters assigned to the generic action.
• Preconditions: the facts that must be achieved previous to the ac-

tion execution. For instance, a model needs to be generated by a
learning algorithm previous to the model evaluation

• Effects: the facts achieved with the action execution
• Costs: the estimated variation of the desired mining results, as the

accuracy or execution time. Action costs are part of the action
effects and are computed as a function of available features of the
dataset and constant values given by the expert.

Figure 2 shows the PDDL action used for representing the
DM task that learns a model with the training data. In this
example, the exec-time function depends on the number of
dataset attributes, the number of instances and the constant
model-instance-exec-time. This constant is particular to
each model received as an action argument. Thus, adjusting these
constant values an expert can reproduce the different estimated dura-
tions of DM tasks. Moreover, variations on other functions, (i.e., un-
readability and percentage-incorrect) are also reproducible with its
particular constant values. The objective of the PDM learning com-
ponent, explained in the next section, is to learn these values based
on the experience of WEKA knowledge flows executions.

After solving the PDDL problem, the Planner module returns a set
of plans in XML format ready for the conversion to a KFML format.
Currently, planning tasks are solved by the SAYPHI planner [6], but
the architecture could use any other planner that supports fluents,
conditional effects and metrics. We have used SAYPHI because it: i)
supports an extensive subset of PDDL; and ii) incorporates several
search algorithms able to deal with quality metrics.

3 The Learning Component
As defined above, the PDM architecture uses expert knowledge to
define some important planning information, like the time required
to build an specific model, or the estimated accuracy of the result-
ing model. Initially, these values are defined by an expert. However,
those estimations can be far from correct values, since they are hard
to define. Also, it can become difficult to provide those values under
all possible alternative uses of the techniques, different orders in the
execution of preprocessing techniques and the different domains.

The goal of the learning component is to automatically acquire
all those estimations from the experience of previous data mining
processes. The data flow of this component is described in Figure 3.
The main steps of this flow are:

1. Gathering Data Mining Results: the goal is to gather data mining
experience from previous data mining processes. All the informa-
tion is stored in an ARFF file. For a given data mining process, the
following information is stored:



Figure 1. Overview of the PDM architecture.

(:action train-classification
:parameters (?m - Model ?n - ModelName ?d - DataSet ?fi - FieldName ?t - TestMode)
:precondition

(and
(implements ?m classification ?n)
(is-field ?fi ?d)
(is-class-field ?fi)
(dataDictionaryDataField-otype ?fi categorical)
(eval-on ?d ?t)
(task-model-ready ?d))

:effect
(and

(is-classification-model ?d ?n ?fi)
(has-model-of classification)
(not (preprocess-on ?d))
(not (task-model-ready ?d))
(increase (exec-time)

(* (* (model-instance-exec-time ?n)
(* (train-datasize-ratio ?t) (thousandsofInstances)))
(* (dataDictionaryNumberOfFields) (dataDictionaryNumberOfFields))))

(increase (unreadability) (model-instance-unreadability ?n))
(increase (percentage-incorrect)

(* (model-instance-percentage-incorrect ?n) (CorrectionFactor)))))

Figure 2. An example of an action in the PDDL domain file used in PDM.

• Information about the dataset: number of instances of the
dataset, number of attributes of the dataset, number of continu-
ous attributes, etc.

• Information about the model to build: the type of model (associ-
ation, clustering, general regression, neural network, tree, etc.),
the algorithm used to learn the model (RBFNetwork, J48, etc.),

the type of function (classification, regression, clustering), the
learning parameters, etc.

• Information about the results obtained: type of evaluation (split,
cross validation, training set), time to build the model, accuracy,
mean squared error, etc.

• The plan that represents the data mining workflow, and that has



Static
part

Dynamic
part

PDDL Problem

Expected
execution

time, error, …

Results from
previous

executions

OUTPUT
PARSER

ERROR
MODEL

TIME
MODEL

TASK
PARSER

Dataset

Figure 3. Learning Flow in the PDM Architecture.

been executed to obtain the model

2. Model generation: the information obtained in the previous step is
used to learn prediction models. The functions to learn are time,
accuracy and SME (in Figure 3, error and time models). These
models can be generated with the WEKA tool, as shown in the
figure.

3. Given a new dataset, a model type, a function, and a learning al-
gorithm, and using the models generated in the previous step, we
obtain a prediction of the learning time, accuracy and SME that
will be obtained if we perform a new data mining process with
such dataset, model type, function and learning algorithm. These
estimations are included in the PDDL problem file, working out
the value of the corresponding constant from the action cost for-
mula. The updated values are then used when planning new data
mining processes. Figure 4 shows an example of how the fluents
of the dynamic part of the PDDL problem file are updated. In the
figure, the exec-time of treemodel1 (i.e., a specific tree model
corresponding to a learning algorithm with its parameters) is up-
dated, among others.

The updated values in the example are not final estimations,
but factors used in the computation of real estimations, as de-
fined in the action cost formula of the train-classification
operator of the PDDL domain file (see Figure 2). For in-
stance, when we define (= (model-instance-exec-time
treemodel1) 0.001), we do not mean that the execution time
of learning a tree is 0.001, but that such time is computed as a func-
tion of the number of instances and attributes, weighted somehow
with the learned factor 0.001.

There are two ways to update the PDDL problem file with these
estimations: off-line and on-line. Off-line updates require to obtain
information of many data mining processes, use the execution in-
formation to build the models, and employ these models to update

the PDDL problem file, which will stay fixed in the future. On-line
updates assume that, while new data-mining processes are executed,
new learning examples are obtained, so the models can be dynami-
cally updated, and the PMML problem file is continuously updated.
We will only show results for off-line updates in the following sec-
tion.

4 Experiments
This section presents the experimental evaluation for the original
learning-component of the PDM Tool. The experiments were de-
signed to assess the level of improvement the current implementation
of the PDM Tool (i.e. considering the whole KDD process and the
original features) can achieve based on the experience acquired from
working with past datasets. For the evaluation, we have used twenty
datasets from the UCI KDD Archive 3. For each dataset we built a
PMML file with two filters (i.e., attribute selection and discretization)
and six classification algorithms (i.e., J48, IBK, Simple-Logistics,
Multi-layer Perceptron, RBF-Network and SMO). We kept WEKA
default parameters for both filters and algorithms. In addition, the
PDDL domain considers three evaluation methods: training-dataset,
split and cross-validation; also with WEKA default parameters. As a
result of different combinations, we got 72 different knowledge flows
for each dataset. We focus this evaluation on planning for minimiz-
ing the execution time. In order to avoid bias of arbitrarily selected
values for execution time factors (fluents representing the estimated
values), we decided to use equal values for the DM learning algo-
rithms. Thus, this is the baseline for comparison that represents no
expertise in the selection of these values.

The regression models for cost (time) prediction are the results of
the M5Rules algorithm [10]. The reason for selecting this particular
algorithm is the understandability of the output, which allows us to

3 http://archive.ics.uci.edu/ml/datasets.html



Previous
executions.arff

Time
model
Time
model

Time
model

Time
model

New
DM task.arff

(define (problem p1)
        (:domain pdm)
...
  (:init
;; Common to all problems
...  
 (= (exectime) 0)
 (= (unreadability) 0)
 (= (percentageincorrect) 0)
 ...
 (implements NeuralNetwork classification nnmodel2)
 (= (modelinstanceexectime nnmodel2) 0.415)
 (= (modelinstancepercentageincorrect nnmodel2) 5)
 (implements TreeModel classification treemodel1)
 (= (modelinstanceexectime treemodel1) 0.001)
 (= (modelinstancepercentageincorrect treemodel1) 9)
 
...   
(:metric minimize (exectime)))

Figure 4. Example of how the expected DM results values are updated.

check the adequacy of the model. We have used the WEKA imple-
mentation of M5Rules.4 The model is queried with dataset attributes
described in section 3, to obtain a time prediction for the execution
time of each algorithm. Figure 5 shows an example of a rule in one of
the learned models. Examining the models obtained so far we have
observed that the learning algorithm, followed by the number of at-
tributes are the most significant attributes for time prediction (as ex-
pected). The size of the rule sets is usually small (two or three rules).

We expect that the learning configuration will make estimations
closer to the real execution time. Since we do not impose particu-
lar constraints in the PMML specification, the learning configuration
will return the same number of plans (72) but in a different order due
to the updated values. Therefore, the evaluation can be defined as the
comparison of the ranking of plans generated by the planner and the
real ranking.

With this experimental setup we have performed an off-line per-
formance evaluation. The objective is to evaluate the performance
of PDM that uses the learning component, after completely training
the tool. We follow the leave-one-out strategy. For each evaluated
dataset, we train the tool with the 19 other datasets.

For the evaluation we follow a ranking evaluation in the spirit
of [19]. We establish the plan ranking for the set of plans
{π1, . . . , πn} (with n = 72 for this evaluation), using the plan
cost function c(π). Thus, plans are sorted in increasing order of
cost (i.e., estimated execution time) where c(πi) ≤, . . . ,≤ c(πj).
The real ranking is computed from the WEKA execution of the
plans/knowledge-flows. If we define as t(π) the time for the plan
execution, the real ranking is computed from the relation t(πk) ≤
, . . . ,≤ t(πl). As a result, the ranking position R(π, f) is a function
of a plan π and the function f for sorting all plans (f can be either
t for real ranking order or c for planner ranking order). For instance,
R(π1, c) = 10 means that for plan π1, there are 9 plans that have
lower estimated time. For any two plans π1 and π2, if R(π1, c) <
R(π2, c), we consider an order switch if R(π1, t) > R(π2, t). The
interpretation over an order switch is the following: we consider an
error if a plan is considered a better choice than another one by the
planner, but in the real execution (with WEKA) it is actually the op-
posite. For the evaluation, we compute the following two measures:

4 http://weka.sourceforge.net/doc/weka/classifiers/rules/M5Rules.html

• Single ranking order switches (∆): It counts how many pairs
(πi, πj) are ordered incorrectly when comparing estimated times
against real times.

• Weighted ranking order switches (W∆): It multiplies each incor-
rectly ordered pair by the ranking distance as a measure of the
error being committed.

These measures are normalized within the [0,1] interval, where 0
represents the perfect reverse ranking (all possible ordering errors)
and 1 corresponds to the perfect ranking (no ordering errors). A ran-
dom ordering criterion would obtain an average ranking score of 0.5.

4.1 Off-line Performance Results
Table 1 shows the result for the leave-one-out strategy. Some datasets
for the no-learning configuration get values over the random ranking.
This is mainly due to the influence that the evaluation methods have
in the total execution time. For instance, if one uses the same algo-
rithm, it is expected that a 10-fold cross-validation will last longer
than a single training with a dataset split. The learning configuration
improved the ∆ measure in 18 out of 20 datasets, raising 11 per-
centage points in the average measure. The W∆ measure was im-
proved in the same 18 datasets as well. The 14 percentage points of
difference show that errors committed in order switches are less rele-
vant with the learning configuration. Two datasets, magicgamma and
waveform-5000, worsen both measures with the learning. We have
no explanation yet for this behaviour.

5 Current Work
This approach can be improved in two directions. The first one relates
to the fact that the metric for which we learn the regression model
is extracted from the execution of the whole plan, independently of
the individual KDD actions that were executed, and its prediction is
only used for the main DM task (classification/regression). Thus, we
do not differentiate between using a couple of pre-processing tech-
niques and not using them, and the resulting predictive model is a
bit coarse. The second improvement we found out with the previous
experiments relates to the input features for learning the predictive
model. Therefore, our current goals are to have a more controlled



Rule: 3
time =
0.0038 * number-instances
+ 0.163 * number-attributes
+ 61.1754 * model-instance=GRMODEL2,SVMMODEL1,NNMODEL1,TREEMODEL2,LAZYMODEL1,NNMODEL3
- 4.3018

Figure 5. Example of a rule in the M5Rules time prediction model.

No-Learning With Learning
Dataset ∆ W∆ ∆ W∆
arrhytmia 0.60 0.66 0.67 0.75
car 0.53 0.58 0.72 0.82
credit-a 0.49 0.52 0.59 0.65
diabetes 0.46 0.48 0.65 0.73
glass 0.51 0.54 0.69 0.78
haberman 0.42 0.43 0.67 0.76
hepatitis 0.41 0.41 0.52 0.55
hypothyroid 0.61 0.69 0.69 0.78
iris 0.48 0.51 0.69 0.79
kr-vs-kp 0.57 0.62 0.65 0.72
magicgamma 0.62 0.70 0.59 0.65
mfeat-fourier 0.59 0.65 0.79 0.89
mushroom 0.58 0.64 0.65 0.72
nursery 0.63 0.70 0.70 0.78
optdigits 0.61 0.68 0.71 0.82
page-blocks 0.63 0.70 0.71 0.8
waveform-5000 0.62 0.69 0.60 0.65
wine 0.47 0.52 0.69 0.79
yeast 0.58 0.64 0.61 0.65
zoo 0.44 0.45 0.51 0.55
Average 0.54 0.59 0.65 0.73

Table 1. Measures for ranking order switches between estimated and real
execution time in the evaluated datasets.

execution of the plans, and the use of a better set of features when
learning the criteria models. Both goals aim at improving the learn-
ing step of those models, so that we have better predictive models
of the behaviour of KDD actions in different datasets. In relation to
the first goal, we are changing the execution of the whole plan (KDD
workflow), followed by an evaluation of the results, by an execu-
tion step by step of the plan. We differentiate between “plan actions”
(the actions in the domain model used by the planner) and “execu-
tion actions” (specific KDD tasks that need to be performed to con-
sider a plan action executed). Once the planner has generated a set
of plans, each of the resulting plans is divided into its plan actions.
Every plan action is passed to an execution module that performs
three steps: map each plan action into one or more execution actions,
execute each of these execution actions and obtain its results (e.g.
execution time, accuracy). The results of applying the corresponding
execution actions are aggregated to compose the corresponding plan
action cost. This controlled execution environment allows PDM to
establish how actions are executed, not repeating actions that have al-
ready been executed in previous plans (for example loading a dataset,
or applying the same sequence of filters), and providing fine-grained
information about action costs.

In relation to the second goal, we have incorporated more infor-
mation about the datasets, such as the meta-learning characteristics
described in [5]. These features are added to the previous ones that
were used to learn the model of the corresponding plan action cost
estimation (execution time, accuracy, . . . models). In plan cost esti-

mation this current approach has two main advantages over previous
work: a better characterization of preprocessing actions based in the
dataset chracteristics where they are applied, and a characterization
of an algorithm expected time and accuracy, independently from pre-
vious preprocessing actions. Examples of new features are:

• Mean standard deviation of numeric features
• Average coefficient of variation of numeric features
• Average skewness of numeric features
• Average kurtosis of numeric features
• Average normalized entropy of nominal features.
• Average of mutual information of class and attributes of nominal

features
• Equivalent number of attributes of nominal features
• Noise-signal ratio of nominal features

Currently, global meta-characteristics are considered, because the
representation of the domain is propositional. We are also consider-
ing posing the learning problem in the relational setting, so that we
can also consider features relevant to individual attributes.

6 Related Work
The work presented in this paper can be framed into three different
fields. First, it is a tool based on AI planning for assisting data mining
tasks. There have been already several works on automating the data
mining process through planning techniques [1, 2, 17]. The closest
to our work is the second one where authors present the Intelligent
Discovery Assistant (IDA). It lists potentially useful DM operations,
as well as a ranking of those. They represent common DM operations
in an ontology instead of in a traditional planning domain. The ontol-
ogy represents a hierarchy of operations in a planning style, includ-
ing preconditions, effects and costs. IDA implements its own search
algorithm using that ontology and it returns a list of all possible solu-
tions by finding all plans that achieve the goals, but without using any
state-of-the-art planner. Similarly to us, each DM operator includes
estimations of the effects on each goal, as accuracy or execution time,
and the returned plans try to optimize them. They can dynamically
include new DM operators with their corresponding estimations that
influence the ranking, but they cannot automatically change the esti-
mated values as our learning module does. Also, since they use their
“ad hc” planning system, they cannot benefit from the advances on
this field, as we can do by using the PDDL standard.

Second, the learning module of the PDM tool applies machine
learning techniques for improving future data mining episodes. One
could see it as a form of meta-learning [3]. Meta-learning studies
methods that exploit meta-knowledge to obtain efficient models and
solutions by adapting machine learning techniques. Apart from the
techniques necessary to build meta-learning systems, it involves ad-
dressing some tasks that are also important for our work. For exam-
ple, what the typical properties of datasets (or meta-features) are that



have the strongest impact on learning [15] or how to profit from the
repetitive use of a predictive model over similar tasks [20]. The de-
scription of a dataset in terms of its meta-features appeared for the
first time within the framework of the European StatLog project [16],
whose purpose was the comparison of learning algorithms. The Eu-
ropean METAL project [7] extended StatLog to cover more learning
algorithms and more datasets, and investigated a number of other
meta-features. Both projects sought to map meta-features to either
a best performing algorithm or to a ranking of algorithms [4]. An-
other attempt to characterize meta-data through an analysis of meta-
features is reported in [5]. In our case, we map datasets features to
predictions on the benefits of using one learning algorithm in terms of
different metrics, as execution time, accuracy or model understand-
ability.

And third, from a planning perspective, we learn the values of
some fluents defined in the domain by combining planning and ex-
ecution. This is similar to the work reported in [14] where they au-
tomatically model the duration of actions execution as relational re-
gression trees learned from observing plan executions. Those mod-
els are incorporated into the planning domain actions in the form of
probabilistic conditional effects. In our case, we do not model prob-
abilistic knowledge, but we learn multiple concepts in parallel. Also,
they used relational models, while we learn propositional ones. The
research reported in [13] explores the area of learning costs of ac-
tions from execution traces as well. They used predictive features of
the environment to create situation-dependent costs for the arcs in the
topological map used by a path planner to create routes for a robot.
These costs are represented as learned regression trees.

7 Conclusions
This paper presents current work on the use of machine learning tech-
niques to improve the KDD process of the PDM architecture. PDM
uses automated planning techniques to help the data mining process.
Previous work on PDM applied a learning technique to model the ef-
fect of selecting specific DM classification/regression actions to ana-
lyze a given dataset. However, those models were obtained from val-
ues resulting of applying KDD plans that incorporated not only the
specific classification or regression techniques, but also a sequence
of pre-processing techniques. In our current work, we are separating
the execution of pre-processing actions from classification/regression
actions, so that we can learn better predictive models of execution of
KDD actions. We are also improving the features used for learning
those models. In the future, we would like to provide the user with
a mixed-initiative tool, so that the user can guide the KDD steps to-
wards preferred techniques, or selecting or pruning KDD actions.

7.1 Acknowledgements
This work has been partially supported by the Spanish MICINN un-
der projects TIN2008-06701-C03-03, TRA-2009-008, the regional
projects CCG08-UC3M/TIC-4141 and the Automated User Knowl-
edge Building (AUKB) project funded by Ericsson Research Spain.

References
[1] Robert S. Amant and Paul R. Cohen, ‘Evaluation of a semi-autonomous

assistant for exploratory data analysis’, in Proc. of the First Intl. Conf.
on Autonomous Agents, pp. 355–362. ACM Press, (1997).

[2] Abraham Bernstein, Foster Provost, and Shawndra Hill, ‘Toward intelli-
gent assistance for a data mining process: An ontology-based approach
for cost-sensitive classification’, IEEE Transactions on Knowledge and
Data Engineering, 17(4), (2005).

[3] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and R. Vilalta,
Metalearning: Applications to Data Mining, Cognitive Technologies,
Springer, January 2009.

[4] Pavel Brazdil, Carlos Soares, and Joaquim P. Costa, ‘Ranking learning
algorithms: Using ibl and meta-learning on accuracy and time results’,
Machine Learning, 50(3), 251–277, (March 2003). ISI, DBLP.

[5] Ciro Castiello, Giovanna Castellano, and Anna Maria Fanelli, ‘Meta-
data: Characterization of input features for meta-learning’, in MDAI,
pp. 457–468, (2005).

[6] Tomás De la Rosa, Angel Garcı́a-Olaya, and Daniel Borrajo, ‘Using
cases utility for heuristic planning improvement’, in Case-Based Rea-
soning Research and Development: Proceedings of the 7th Interna-
tional Conference on Case-Based Reasoning, pp. 137–148, Belfast,
Northern Ireland, UK, (August 2007). Springer Verlag.

[7] Metal: A meta-learning assistant for providing user support in machine
learning and data mining, 1998-2001.

[8] Susana Fernández, Fernando Fernández, Alexis Sánchez, Tomás de la
Rosa, Javier Ortiz, Daniel Borrajo, and David Manzano, ‘On compiling
data mining tasks to pddl’, in Proceedings of International Competition
on Knowledge Engineering for Planning and Scheduling, ICAPS’09,
Thessaloniki (Greece), (September 2009).

[9] M. Fox and D. Long, ‘PDDL2.1: An extension to PDDL for express-
ing temporal planning domains’, Journal of Artificial Intelligence Re-
search, 61–124, (2003).

[10] Mark Hall Geoffrey Holmes and Eibe Prank, ‘Generating rule sets from
model trees’, Advanced Topics in Artificial Intelligence, 1747, 1–12,
(1999).

[11] Malik Ghallab, Dana Nau, and Paolo Traverso, Automated Planning -
Theory and Practice, Morgan Kaufmann, San Francisco, CA 94111,
2004.

[12] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, and Graham Williams,
‘PMML: An Open Standard for Sharing Models’, The R Journal, 1(1),
60–65, (May 2009).

[13] Karen Zita Haigh and Manuela M. Veloso, ‘Learning situation-
dependent costs: Improving planning from probabilistic robot execu-
tion’, in In Proceedings of the Second International Conference on Au-
tonomous Agents, pp. 231–238. AAAI Press, (1998).

[14] Jesús Lanchas, Sergio Jiménez, Fernando Fernández, and Daniel Bor-
rajo, ‘Learning action durations from executions’, in Proceedings of the
ICAPS’07 Workshop on Planning and Learning, Providence, Rhode Is-
land (USA), (2007).

[15] Jun Won Lee and Christophe G. Giraud-Carrier, ‘New insights into
learning algorithms and datasets’, in ICMLA, pp. 135–140, (2008).

[16] Machine Learning, Neural and Statistical Classification, eds., Donald
Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, Ellis Hor-
wood, Upper Saddle River, NJ, USA, 1994.

[17] Katharina Morik and Martin Scholz, ‘The miningmart approach to
knowledge discovery in databases’, in In Ning Zhong and Jiming Liu,
editors, Intelligent Technologies for Information Analysis, pp. 47–65.
Springer, (2003).

[18] Vid Podpecǎn, Nada Lavrač, Joost N. Kok, and Jeroen de Bruin, eds.
SoKD-09, “Third Generation Data Mining: Towards Service-oriented
Knowledge Discovery”, International Workshop on Third Generation
Data Mining at ECML PKDD 2009, Bled, Slovenia, September 2009.

[19] Saharon Rosset, Claudia Perlich, and Bianca Zadrozny, ‘Ranking-based
evaluation of regression models’, Knowledge and Information Systems,
12(3), 331–353, (2007).

[20] R. Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, and Carlos Soares,
‘Using meta-learning to support data mining’, International Journal of
Computer Science and Applications, 1(1), 31–45, (2004).

[21] Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learn-
ing Tools and Techniques, 2nd Edition, Morgan Kaufmann, 2005.


