
Provenance in Databases: Past, Current, and Future

Wang-Chiew Tan∗

UC Santa Cruz
wctan@cs.ucsc.edu

Abstract

The need to understand and manage provenance arises in almost every scientific application. In many
cases, information about provenance constitutes the proofof correctness of results that are generated by
scientific applications. It also determines the quality andamount of trust one places on the results. For
these reasons, the knowledge of provenance of a scientific result is typically regarded to be as important
as the result itself. In this paper, we provide an overview ofresearch in provenance in databases and dis-
cuss some future research directions. The content of this paper is largely based on the tutorial presented
at SIGMOD 2007 [11].

1 Overview of Provenance

The wordprovenanceis used synonymously with the wordlineagein the database community. It is also some-
times referred to assource attributionor source tagging. Provenance meansorigin or source. It also means
the history of ownership of a valued object or work of art or literature [26]. The knowledge of provenance is
especially important for works of art, as it directly determines the value of the artwork. The same applies to
digital artifacts or results that are generated by scientific applications. Information about provenance constitutes
the proof of correctness of scientific results and in turn, determines the quality and amount of trust one places on
the results. For these reasons, the provenance of a scientific result is typically regarded to be as important as the
result itself. There are two granularities of provenance considered in literature:workflow (or coarse-grained)
provenanceanddata (or fine-grained) provenance. In what follows, we provide an overview of workflow and
data provenance. However, the focus of this paper is on data provenance, which is described in the rest of this
paper (Sections 2 to 4).

Workflow (or coarse-grained) provenance: In the scientific domain, a workflow is typically used to perform
complex data processing tasks. Aworkflow can be thought of as a program which is an interconnection of
computation steps and human-machine interaction steps.Workflow provenancerefers to the record of the entire
history of the derivation of the final output of the workflow. The amount of information recorded for workflow
provenance varies. It may include a complete record of the sequence of steps taken in a workflow to arrive
at some dataset. In some cases, this entails a detailed record of the versions of softwares used, as well as the
models and makes of hardware equipments used in the workflow.In addition to providing a proof of correctness

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Supported in part by NSF CAREER Award IIS-0347065 and NSF grant IIS-0430994.

1

GenBank

(S1) Download
Sequences

(S2) Create
Alignment

(S3) Refine
Alignment

(S4) Infer Tree

Tree
RepositoryIf output is unsatisfactory, repeat

Figure 1: An example of a workflow from [16].

to the final workflow output, workflow provenance can also be useful for avoiding duplication of efforts; With
appropriate bookkeeping of inputs taken by parts of the workflow, it is possible to identify parts of the workflow
that need not be repeated across different execution runs.

Example 1: A simple example of a workflow from [16] is depicted in Figure 1. Arrows denote the flow of data,
while boxes are used to indicate data processing steps. Thisworkflow describes the steps taken to construct
a phylogenetic tree from a set of DNA sequences. The workflow starts with step (S1) which downloads a set
of DNA sequences from the GenBank repository. The second step (S2) takes the DNA sequences and runs an
external sequence alignment program to generate a sequencealignment. Details of how a sequence alignment
is constructed from multiple DNA sequences are “hidden” by the external program (i.e., the external program
is a blackbox). Step S3 involves interaction with a biologist. The biologist examines the sequence alignment
obtained from (S2) and may improve on the quality of the sequence alignment output by manually adjusting
gaps inserted by the alignment program. The last step (S4) takes the edited alignment as input and produces a
phylogenetic tree as output. There are in fact many steps involved in (S4) (see [16] for a detailed explanation).
However, step (S4) abstracts the process of constructing a phylogenetic tree from the sequence alignment as
another blackbox. The provenance of an execution of this workflow may include a record of the version of the
GenBank repository used, the DNA sequences used, the software and version of the software used for sequence
alignment, as well as the decisions made by the biologist in editing the alignment.

As described in Example 1, an external process in step (S2) isinvolved in the workflow. In general, external
processes do not possess good properties for a detailed analysis of the transformation since such details are
typically hidden. Hence, the workflow provenance for this step is usuallycoarse-grained. That is, only the
input, output and the software used by an external process are recorded.

Data (or fine-grained) provenance:In contrast,data (or fine-grained) provenancegives a relatively detailed
account of the derivation of a piece of data that is in the result of a transformation step. A particular case of data
provenance that is of interest to the database community andfor which there have been considerable research
efforts is when the transformation is specified by a databasequery. More precisely, suppose a transformation on
a databaseD is specified by queryQ, the provenance of a piece of datat in the output ofQ(D) is the answer to
the following question:Which parts of the source databaseD contribute tot according toQ?

This is the subject of research of [18], where the authors described algorithms for computing data provenance
in the relational framework. We give an example of data provenance in the relational setting next.

Source databaseD:
Employee

empid dept

e977 CS
e132 EE
e657 BME

Department
deptid budget

BME 1200K
CS 670K
EE 890K
MATH 230K

QueryQ:
SELECT e.empid,e.dept,d.budget
FROM Employeee, Departmentd
WHERE e.dept =d.deptid

Output ofQ(D):
empid dept budget

e657 BME 1200K
e977 CS 670K
e132 EE 890K

Figure 2: An example of a data transformation with SQL.

2

Q

Q’

Extra
information

(b)

Q

(a)

Input Output

OutputInput

’90 ... ’97 ... ’00 ’01 ’02 ’03 ... ’05 ’06 ’07

A [31] [10][30] ... [4] [17] [7]
... [21][13]
... [22][20]
... [23]
... [29]

NA ... [32] ... [18][9] ... [14]

(c)

Figure 3: (a) Non-Annotation (NA) approach, (b) Annotation (A) approach, (c) a timeline for data provenance
research efforts using eitherNAor A approach.

Example 2: SupposeD and Q are the database and query, respectively, shown in Figure 2.The result of
executingQ againstD is also shown on the right of the same figure. The source tuples(e657, BME) and
(BME,1200K) contribute to the output tuple (e657,BME,1200K) according toQ. In particular, observe that some
source tuples, such as (e132,EE), play no role in contributing to the output tuple (e657,BME,1200K) according
to Q. The basic idea behind the algorithms proposed in [18] is to compute data provenance by analyzing the
underlying algebraic structure of relational queries. Provenance is computed and aggregated according to the
underlying algebraic operators used in query on an operator-by-operator basis.

Data provenance is the focus of this paper and we shall elaborate more on data provenance in subsequent
sections. Readers who are interested in workflow provenancemay find the following references useful: A survey
of provenance research related to scientific data processing and scientific workflow systems [5, 19] and a survey
on provenance research in E-science [28].

All of the existing research efforts on data provenance adopt one of two contrasting approaches for com-
puting data provenance: (1)Non-annotation approachvs. (2)Annotation approach. Techniques for computing
data provenance that use the non-annotation approach allowthe execution of a transformation functionQ as
it is. See Figure 3(a), which shows a normal execution ofQ. That is,Q is executed on an input database to
generate an output database. In order to compute the provenance of a piece of output data, it is typically the case
that the input and output database, as well as the definition of Q, are analyzed to arrive at an answer. In con-
trast, techniques for computing provenance that use the annotation approach (see Figure 3(b)) carry additional
information to the output database. In order to compute the extra information, the original transformationQ is
usually modified to another transformationQ′ so that whenQ′ is applied on the input database, it generates an
output database that is identical to that generated byQ applied on the input database, as well as the additional
information. With this approach, the provenance of a piece of output data can typically be derived by analyzing
the extra information.

A timeline where the research efforts are classified according to the two approaches is tabulated in Figure
3(c). We shall discuss past research efforts (i.e., mainly research efforts prior to 2005) and current research
efforts (i.e., mainly research efforts between 2005 and 2007) on data provenance in Sections 2 and 3 respectively.
We conclude with some future research directions in Section4.

2 Data Provenance: Past

As described in Section 1, the problem of computing data provenance in the relational framework was studied
in [18]. It is easy to see that the need to compute data provenance applies not only to tuples of relations, but
also to data that occur at different levels of granularitiesin a hierarchical or tree-like structure. This observation
was made in [9], where the authors described a hierarchical data model and an associated query language for
manipulating data in this hierarchical model. The provenance of a piece of data, at any granularity, in the result

3

of a monotone query can be obtained by analyzing the syntax ofthe query. In [9], the authors also made a
distinction betweenwhy andwhere-provenance. The type of provenance studied by [18] is essentially why-
provenance. Where-provenance, on the other hand, is a description of the locations in the input database which
contain values where a piece of output data is copied from. Tosee the difference between why and where-
provenance, consider Example 2 again. The why-provenance of the output tuple (e657,BME,1200K) according
to Q consists of the two source tuples as described in Example 2. However, the where-provenance of the value
“BME” in the output tuple (e657,BME,1200K) is the location pointed by thedept attribute in the source tuple
(e657,BME). In other words, the “BME” value of the output tuple is copied from the “BME” value of the source
tuple (e657,BME) and not from the “BME” value of the source tuple (BME,1200K). This is because the query
Q extracts “BME” frome.dept (and notd.deptid). Observe that in contrast to the why-provenance of the output
tuple (e657,BME,1200K), the where-provenance of “BME” of the same output tuple completely disregards the
source Department relation.

Prior to [9] and [18], there has been a few similar research efforts [31, 32] targeted at resolving the data
provenance problem. The authors of [32] proposed to build the functionality of computing data provenance into
a database system using the non-annotation approach. Theirmotivation for using the non-annotation approach
was to support provenance tracing in a database visualization environment, where large datasets are usually
involved. It is therefore infeasible to associate additional information to every datum in these datasets for
computing provenance. The main idea in [32] was to allow a user to register data processing functions and their
corresponding inverse functions in a database system. Whengiven a specific piece of output data to invert, an
inversion planner module within the database system would infer which inverse function to apply and construct
an execution plan by invoking the appropriate functions in the database system. However, since not all functions
are invertible, a user is also allowed to registerweak inversesinstead. Intuitively, a weak inverse is an inverse
function that approximates provenance; It may only return asubset of the desired provenance or more than what
is required. A separate verification function is required toexamine that the answers returned by the weak inverse
are indeed answers to provenance. A fundamental drawback ofthis technique is that the user is required to
provide (weak) inverse functions and their corresponding verification functions. Subsequent research efforts by
[9] and, respectively, [18] that were described earlier, overcome this limitation by computing data provenance
through analyzing the syntax and, respectively, algebraicstructure of the queries.

The work of [31] first made the idea of using an annotation approach to compute provenance explicit. They
proposed a polygen model (“poly” for “multiple” and “gen” for “source”) that is able to track which originating
data sources and intermediate data sources were used to generate an output data of interest. In [31], operational
definitions on how one can compute the originating sources and intermediate sources of an attribute value over
basic relational algebra operators were given.

The polygen idea was followed up by [10], where a similar set of operational definitions (calledpropagation
rulesin [10]) for basic relational operators were given1. In [10], however, the authors made clear that annotations
(and not only originating sources) associated with source data can be propagated from source to output based
on the propagation rules. Furthermore, the propagation rules were designed to propagate annotations based
on where data is copied from (i.e., where-provenance). In particular, the relationships betweenlocationsof
data in the input and output database were formalized through the propagation rules given in [10]. One of the
problems studied in [10] is theannotation placement problem: Given a queryQ, source databaseD, a view
V = Q(D), and an annotation, denoted as∗, placed in the viewV , decide whether there is location to place
the annotation∗ in D so that∗ propagates to the desired location inV and nowhere else.If such a placement
of ∗ in D exists, it is called a “side-effect-free annotation”. The study of the annotation placement problem is
important for understanding the bidirectional transport of annotations between the source database and the view.
The authors showed a dichotomy in the complexity of the annotation placement problem for Select-Project-Join-
Union (SPJU) queries: It is NP-hard to decide if there is a side-effect-free annotation for a project-join relational

1In [10], the authors had natural join instead of cartesian product in the set of basic relational algebra operators.

4

query even in the special case where the join is always performed before projection. On the other hand, there is
a polynomial-time algorithm for deciding whether there is aside-effect-free annotation for SPJU queries which
do not simultaneously contain both project and join operators. In fact, the annotation placement problem was
later shown to be DP-hard in [30]. In [17], the authors showedthat many of the complexity issues disappear for
key-preserving operations, which are operations that retain the keys of the input relations.

3 Data Provenance: Current

In this section, we describe research efforts that mainly occur between 2005 and 2007, as shown in Figure
3(c). Our discussion will center around two research projects, DBNotes [4, 15] and SPIDER [1, 14], recently
developed at UC Santa Cruz.

3.1 DBNotes

The work of DBNotes builds upon ideas developed in [10, 30]. DBNotes is an annotation management system
for relational database systems. In DBNotes, every attribute value in a relation can be tagged with multiple an-
notations. When a query is executed against the database, annotations of relevant attribute values in the database
are automatically propagated to attribute values in the result of the query execution. The queries supported by
DBNotes for automatic annotation propagation belong to a fragment of SQL queries that corresponds roughly to
select-project-join-union queries. In itsdefaultexecution mode, annotations are propagated based on where data
is copied from (i.e., where-provenance). As a consequence,if every attribute value in the database is annotated
with its address, the provenance of data is propagated along, from input to output, as data is transformed by the
query. An example of annotations propagated in the default manner is shown below:

Source databaseD:
Employee
empid dept

e977 (a1)CS (a2)
e132 (a3)EE (a4)
e657 (a5)BME (a6)

Department
deptid budget

BME (b1) 1200K (b2)
CS (b3) 670K (b4)
EE (b5) 890K (b6)
MATH (b7)230K (b8)

QueryQ:
SELECT e.empid,e.dept,d.budget
FROM Employeee, Departmentd
WHERE e.dept =d.deptid
PROPAGATE default

Output ofQ(D):
empid dept budget

e657 (a5)BME (a6)1200K (b2)
e977 (a1)CS (a2) 670K (b4)
e132 (a3)EE (a4) 890K (b6)

In this example, every attribute value in the source relations, Employee and Department, is annotated with
a unique identifier. For instance, the attribute value 670K is annotated with the identifierb4. The queryQ has
an additional “PROPAGATE default” clause, which means that we are using the default execution mode as
explained earlier. By analyzing the annotations that are propagated toQ(D), we can conclude that the value
“BME” in Q(D) was copied from “BME” in the Employee relation (and not the “BME” in Department relation).
If the SELECT clause ofQ had been “e.empid,d.deptid,d.budget” instead, then the annotation associated with
“BME” in Q(D) would beb1 instead ofa6. Hence, equivalent queries may propagate annotations differently.
This presents a serious difficulty as it means that the annotations (or provenance answers) that one obtains in the
result is dependent on the query plan chosen by the database engine. DBNotes resolves this problem through a
novel propagation scheme, called thedefault-all propagation scheme. In this scheme, all annotations of every
equivalent formulation of a query are collected together. Consequently, propagated annotations are invariant
across equivalent queries. This scheme can thus be viewed asthe most general way of propagating annotations.
In our example, the “BME” value inQ(D) will consist of both annotationsa6 and b1 under the default-all
scheme. At first sight, the default-all scheme seems infeasible because the set of all equivalent queries is infinite
in general. In [4], a practical and novel implementation that avoids the enumeration of every equivalent query
is described. The key insight is that for monotone relational queries, all relevant annotations can in fact be
determined by evaluating every query in a finite set of queries. Such a finite set can always be obtained, and is
not too big in general. DBNotes also allows one to definecustompropagation schemes. In this scheme, the user
can specify where annotations should be retrieved from input relations. The custom scheme is especially useful
when the user is, for example, only interested in retrievingannotations from a particular database, perhaps due

5

to its authority, over other databases. In [15], the query language of DBNotes was extended to allow querying
of annotations. Techniques were also developed to explain the provenance and flow of data through query
transformations via the analysis of annotations.
Extensions to DBNotes.In DBNotes, as well as [10], annotations can only be placed ona column of a tuple
of a relation2. In other words, annotations can only be associated with attribute values only, and not tuples or
relations. In [21], an extension is made so that annotationscan be placed on any subset of attributes of a tuple
in a relation. Acolor algebrathat can query both values and annotations is also described. They showed that
for unions of conjunctive queries, the color algebra is complete with respect tocolor relational algebra queries.
A color relational algebra queryis a query that when applied on an color database (i.e., relations with extra
columns for storing annotations) returns another color database. They also showed that every operator in the
color algebra is necessary for the completeness result to hold. In [20], a similar completeness result is proven
for full relational algebra instead of unions of conjunctive queries; The color algebra of [20] is shown to be
complete with respect to color relational algebra queries.

In [29], the idea of associating annotations with data is further extended to allow annotations to be placed
on an arbitrary collection of data in a database. A query is used to capture the collection of data of interest
and the query is then associated with the desired annotations in a separate table. Similarly, one can associate
a collection of data with another collection of data by usingtwo queries that capture the collections of data of
interest respectively, and then associating the queries together in a separate table.
Expressivity of languages that propagate annotations.Since many languages that manipulate annotations (or
provenance) were proposed, a natural question is the comparative expressive power of these query languages.
For example, one natural question is the following: How doesthe propagation scheme for originating sources
as proposed in [31] compare with the default propagation scheme of DBNotes? Is one more expressive than the
other? The work of [7] addressed this question. They showed that the default propagation scheme of DBNotes
is as expressive as the propagation scheme for originating sources proposed in [31]. To show this result, they
defined a query language that manipulates annotations as “first-class citizens”, and showed that the propagation
schemes of [31] and DBNotes are equivalent in expressive power to a certain class of queries in their language.

3.2 SPIDER

In this section, we describe a recent work on computing provenance over schema mappings that uses the non-
annotation approach.

Schema mappingsare logical assertions of the relationships between an instance of a source schema and an
instance of the target schema. They are primary building blocks for the specification of data integration, data
exchange and peer data management systems. A fundamental problem in integration systems is the design and
specification of schema mappings, which typically takes a lot of time and effort to get it right [3, 24].

SPIDER [1, 14] is a system that facilitates the design of mappings by allowing mapping designers to un-
derstand, debug, and refine schema mappings at the level of mappings, through the use of examples. The idea
behind SPIDER is very much like debuggers for programming languages which allow programmers to under-
stand, debug, and refine their programs by running their programs on some test cases. The main approach that
SPIDER uses to explain the semantics of mappings is through descriptions of the provenance (resp. flow) of
data in the target instance (resp. source instance) throughchains of possibly recursive mappings. These descrip-
tions are calledroutesand intuitively, they describe how data in the source and target instances are related and
constrained via mappings. In SPIDER, a mapping designer caneither display routes ending at selected target
data (i.e., trace the provenance of target data) or display routes starting at selected source data (i.e., trace the
flow of source data). We describe an example of routes next.

2The same applies to [31], where originating sources are associated with attribute values.

6

Source instanceI :
CardHolders

accNo limit ssn name

123 $15K ID1 Alice
Dependents

accNo ssn name

123 ID2 Bob

Mappings:
for c in CardHolders⇒ existsa in Accounts andcl in
Clients wherea.AccNo = c.AccNo anda.accHolder =
c.ssn andcl.ssn = c.ssn andcl.name = c.name (m1)

for d in Dependents⇒ existscl in Clients
wherecl.ssn = d.ssn cl.name = d.name (m2)

for cl in Clients⇒ existsa inAccounts
wherea.accHolder = cl.ssn (m3)

Target instanceJ :
Accounts

accNo creditLine accHolder

123 L1 ID1
A1 L2 ID2

Clients
ssn name

ID1 Alice
ID2 Bob

The source schema consists of two relational schemas, CardHolders and Dependents, and the target schema
consists of two relational schemas, Accounts and Clients. There are three mappings,m1,m2 andm3, written
in a query-like notation as shown in the middle of the figure above. Intuitively, the first mappingm1 asserts
that for every tuple in the CardHolders relation, there exists a tuple in the target Accounts relation and a tuple
in Clients whose correspondingaccNo, accHolder, ssn andname values are equal to theaccNo, ssn, ssn,
andname values, respectively, of the Cardholders tuple. The mapping m2 asserts that every Dependents tuple
has a corresponding Clients tuple whosessn values coincide. The last mappingm3 is a constraint on the target
instance that says that the existence of a Clients tuple implies the existence of an Accounts tuple where thessn
value of the former is equal to theaccHolder value of the latter tuple.

Given the schemas and the mappings, a mapping designer may wish to understand the mappings by executing
them against a source instanceI shown on the left of the figure above. A target instanceJ that conforms to the
target schema and also satisfies the mappings is shown on the right. Such a target instance may be obtained
by executing the schemas and mappings on a data exchange system such as Clio [25] or, by directly reasoning
about the semantics of the mappings. InJ , the valuesL1, L2 andA1 represent possibly distinct unknown values
for credit limits and account number. Since an account cannot be created without an account number, a mapping
designer may probe onA1 to understand howA1 was formed in the exchange process. In response to the probe,
SPIDER displays a route (shown below), starting from a source tuple inI that ultimately leads to the target tuple
in J that contains the probedA1.

Dependents(123,ID2,Bob)
m2−→ Clients(ID2,Bob)

m3−→ Accounts(A2,L2,ID2)

Intuitively, the route explains that the Dependents tuple (i.e., Bob) inI leads to the Clients tuple (i.e., Bob) in
J via mappingm2, which in turn leads to the ID2 Accounts tuple inJ via mappingm3. Although not illustrated
here, SPIDER also displays the bindings of variables inm2 andm3 that were used to derive each tuple in the
route. By analyzing the route, a mapping designer may realize that the account number 123 in the Dependents
tuple was somehow not copied over to the target and may hence refine or correct the mappings in the process.

The example above was kept simple for ease of exposition. In reality, mappings are usually not as simple
as those shown in this example. They are usually larger and typically more complex. A major difficulty in
computing routes is to reason about chains of possibly recursive mappings among schemas. Furthermore, the
number of routes to illustrate to a mapping designer in response to a single probe may be overwhelming. In [14],
an algorithm for computing routes that overcomes these difficulties has been developed. Their algorithm encodes
the set of all routes, even when there may be exponentially many, in a compact polynomial-size representation.
A demonstration of SPIDER is described in [1].
How-Provenance.Routes are different from why-provenance in that they not only describe which input tuples
contribute to the existence of an output tuple, but alsohow the input tuples lead to the existence of the output
tuple. Thus, compared to why-provenance, it is a more detailed explanation of the existence of an output tuple.
In a recent paper [23], the authors described a method whereby provenance can be described using asemiring
of polynomialsin the context of datalog queries and introduced the termhow-provenance. Semirings are similar
to routes of SPIDER in that they capture the input tuples thatcontribute to an output tuple, as well ashow
they contribute to that output tuple. For example, letR1(A,B) be a binary relation with three tuplest1, t2
andt3, wheret1 = (1, 2), t2 = (1, 3) andt3 = (2, 3) and letR2(B,C) be another binary relation with three

7

tuplest4, t5 andt6, wheret4 = (2, 3), t5 = (3, 3) andt6 = (3, 4). The result of the queryΠA,C(R1 ⊲⊳ R2)
consists of three tuples(1, 3), (1, 4), (2, 3), (2, 4). The provenance polynomial for the output tuple(1, 3) is
t1t4 + t2t5, which describes that the output tuple(1, 3) is witnessed byt1 andt4 or, t2 andt5. On the other
hand, the why-provenance of(1, 3) according to the query is simply the set of tuples{t1, t2, t4, t5}. Algorithms
for calculating provenance semirings for datalog queries were described in [23]. In [22], an application of
provenance semirings is described in collaborative data sharing: Updates that are propagated along peers carry
along provenance semirings. These propagated semirings are subsequently utilized to trace the derivations of
an update in order to determine whether an update should be filtered based on the trust conditions specified by
participants of the data sharing system.

4 Data Provenance: Future

We have described some major research efforts in data provenance in the past two decades. In this section, we
describe some possible future research directions.

Most research efforts on data provenance have focused on reasoning about the behavior of provenance and
keeping track of annotations or metadata through SQL queries. While SQL queries are fundamental building
blocks of many database applications, knowing how to reasonabout the provenance and flow of data through
SQL queries alone is still insufficient for a complete end-to-end tracking of the provenance and flow of data in
many database applications. For example, a Web applicationthat is powered by a database backend may only use
SQL queries to retrieve data from (or store data into) the underlying database system. Data that is retrieved may
still undergo various transformations (e.g., cleansing orformatting transformations) before they are displayed
on a Web page. To make matters worse, many Web applications today (e.g., mashups) are based on other Web
applications where information is extracted and integrated though public application programming interfaces and
appropriate programming languages. In particular, the process by which information is extracted and integrated
is typically not described by SQL queries. Therefore, a major unsolved challenge for data provenance research
is to provide a uniform and seamless framework for reasoningabout the provenance (and flow) of data through
different data transformation paradigms. We list three aspects of research on data provenance next that would
make progress towards resolving this challenge.

Web applications and many other systems such as data warehouses, extract-transform-load systems behave
very much like workflows, where data typically undergoes a sequence of transformations in different paradigms
(e.g., SQL queries, C programs or Perl scripts.). Hence, oneapproach towards a solution for the above mentioned
unsolved challenge is to examine whether one can combine theresearch efforts of workflow provenance and data
provenance in a uniform manner. So far, the research effortson workflow provenance and data provenance have
been somewhat independent and disconnected. For the two threads of research to converge, extensions to the
formalism for workflow provenance are needed so that nodes that represent external processes in a workflow
need not be treated as a blackbox. In other words, whenever possible, one should be able to drill down and
analyze the provenance of data generated by external programs, which are commonly used in workflows and
typically abstracted as blackboxes by current techniques for computing workflow provenance. On the other front,
techniques for computing data provenance need to be extended to handle constructs of more powerful languages
(e.g., aggregates, iterators, and side-effects etc.). A recent promising research effort [12, 13] uses dependency
analysis techniques, similar to program slicing and program analysis techniques from the programming language
community, to analyze provenance over more complex database queries that includes relational queries with
grouping and aggregates. Another approach towards a uniform framework for analyzing data provenance is
to abstract different data transformation paradigms usinghigher-level declarative formalisms such as schema
mappings. However, similar to the discussion earlier, mappings will need to be enriched to model constructs of
more powerful languages such as aggregates, iterators, side-effects etc.

Another research direction that would make progress towards the unsolved challenge is to develop techniques
for reasoning about or approximating the provenance of datathat is generated by programs through the analysis

8

of the “blackbox behavior” of programs. In other words, evenwhen the details of a program may not be available,
one should still be able to derive the provenance of data generated by the program to a certain extent. Methods
for resolving this challenge will be extremely useful in practice because in many cases, even when the details of
an external program are available, they are typically too complex to be amenable to a systematic analysis.

The last research direction concerns archiving. This is a topic that bears close relationship to provenance and
has not been discussed so far in this paper. Databases and schemas evolve over time. Necessarily, a complete
record of provenance entails archiving all past states of the evolving database so that it becomes possible to
trace the provenance of data to the correct version of the database or trace the flow of data in a version of
the database that is not necessarily the most recent. Archiving is especially crucial for scientific data, where
scientific breakthroughs are typically based on information obtained from a particular version of the database.
Hence, all changes or all versions of the database must be fully documented for scientific results to remain
verifiable. There have been some research efforts on archiving scientific datasets [6, 8]. However, two major
challenges remain: (i) The first is to provide techniques forefficiently archiving versions of databases whose
schema may also evolve over time. At the same time, the structure of the archive should still retain the semantics
of data and relationships between entities across different versions of data as far as possible so that the archive
can be meaningfully analyzed later. (ii) The second is to provide companion techniques to efficiently recover a
version of the database from the archive obtained from (i), incrementally update the archive with a new version
of data, as well as provide techniques to discover or analyzetemporal-related properties in the archive and how
entities evolve over time.

Recently, a number of applications of provenance have emerged in the context of probabilistic databases [2],
schema mappings [14], and updates [22]. These applicationsrequire extensions to prior techniques for comput-
ing provenance. An interesting research direction would beto discover whether there are other applications of
provenance that would require significant extensions to existing techniques or a completely new framework for
computing provenance. For example, a recent workshop on provenance [27] suggests that security, information
retrieval, dataflow or extract-transform-load scenarios etc. are some potential applications to investigate.

References

[1] B. Alexe, L. Chiticariu, and W.-C. Tan. SPIDER: a Schema mapPIng DEbuggeR. InVery Large Data Bases (VLDB),
pages 1179–1182, 2006. (Demonstration Track).

[2] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs: Databases with Uncertainty and Lineage. InVery
Large Data Bases (VLDB), pages 953–964, 2006.

[3] P. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer Mappings. InProceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages 1–12, 2007.

[4] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An Annotation Management System for Relational
Databases.Very Large Data Bases (VLDB) Journal, 14(4):373–396, 2005. A preliminary version of this paper
appeared in the VLDB 2004 proceedings.

[5] R. Bose and J. Frew. Lineage Retrieval for Scientific DataProcessing: A Survey.ACM Computing Survey, 37(1):1–
28, 2005.

[6] P. Buneman, A. Chapman, and J. Cheney. Provenance Management in Curated Databases. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 539–550, 2006.

[7] P. Buneman, J. Cheney, and S. VanSummeren. On the Expressiveness of Implicit Provenance in Query and Update
Languages. InInternational Conference on Database Theory (ICDT), pages 209–223, 2007.

[8] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan. Archiving Scientific Data. ACM Transactions on Database
Systems (TODS), 29(1):2–42, 2004. A preliminary version of this paper appeared in the ACM SIGMOD 2002
proceedings.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A Characterization of Data Provenance. InInternational
Conference on Database Theory (ICDT), pages 316–330, 2001.

9

[10] P. Buneman, S. Khanna, and W.-C. Tan. On Propagation of Deletions and Annotations Through Views. InProceed-
ings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems (PODS), pages 150–158,
2002.

[11] P. Buneman and W.-C. Tan. Provenance in Databases. InProceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 1171–1173, 2007. (Tutorial Track).

[12] J. Cheney. Program Slicing and Data Provenance.IEEE Data Bulletin Engineering, December 2007.

[13] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as Dependency Analysis. InDatabase Programming Languages
(DBPL), pages 138–152, 2007.

[14] L. Chiticariu and W.-C. Tan. Debugging Schema Mappingswith Routes. InVery Large Data Bases (VLDB), pages
79–90, 2006.

[15] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: A Post-It System for Relational Databases based on
Provenance. InProceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 942–944, 2005. (Demonstration Track).

[16] S. Cohen, S. Cohen-Boulakia, and S. B. Davidson. Towards a Model of Provenance and User Views in Scientific
Workflows. InWorkshop on Data and Integration in Life Sciences (DILS), pages 264–279, 2006.

[17] G. Cong, W. Fan, and F. Geerts. Annotation Propagation for Key Preserving Views. InACM International Conference
on Information and Knowledge Management (CIKM), pages 632–641, 2006.

[18] Y. Cui, J. Widom, and J. L. Wiener. Tracing the Lineage ofView Data in a Warehousing Environment.ACM
Transactions on Database Systems, 25(2):179–227, 2000.

[19] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludascher,T. McPhilips, S. Bowers, M. K. Anand, and J. Freire.
Provenance in Scientific Workflow Systems.IEEE Data Bulletin Engineering, December 2007.

[20] F. Geerts and J. V. den Bussche. Relational Completeness of Query Languages for Annotated Databases. InDatabase
Programming Languages (DBPL), pages 127–137, 2007.

[21] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN: Annotating and Querying Databases through Colors
and Blocks. InInternational Conference on Data Engineering (ICDE), page 82, 2006.

[22] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.Update Exchange with Mappings and Provenance. InVery
Large Data Bases (VLDB), pages 675–686, 2007.

[23] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. InProceedings of the ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of database systems (PODS), pages 675–686, 2007.

[24] L. Haas. Beauty and the Beast: The Theory and Practice ofInformation Integration. InInternational Conference on
Database Theory (ICDT), pages 28–43, 2007.

[25] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio Grows Up: From Research Prototype to Industrial
Tool. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages
805–810, 2005.

[26] Merriam-Webster OnLine. http://www.m-w.com.

[27] Workshop on Principles of Provenance (PrOPr), November 2007. http://homepages.inf.ed.ac.uk/jcheney/propr/.

[28] Y. Simmhan, B. Plale, and D. Gannon. A Survey of Data Provenance in E-Science.SIGMOD Record, 34:31–36,
2005.

[29] D. Srivastava and Y. Velegrakis. Intensional Associations Between Data and Metadata. InProceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages 401–412, 2007.

[30] W.-C. Tan. Containment of Relational Queries with Annotation Propagation. InDatabase Programming Languages
(DBPL), pages 37–53, 2003.

[31] Y. R. Wang and S. E. Madnick. A Polygen Model for Heterogeneous Database Systems: The Source Tagging
Perspective. InVery Large Data Bases (VLDB), pages 519–538, 1990.

[32] A. Woodruff and M. Stonebraker. Supporting Fine-grained Data Lineage in a Database Visualization Environment.
In International Conference on Data Engineering (ICDE), pages 91–102, 1997.

10

