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Abstract

The need to understand and manage provenance arises intadwey scientific application. In many
cases, information about provenance constitutes the mbodrrectness of results that are generated by
scientific applications. It also determines the quality @mdount of trust one places on the results. For
these reasons, the knowledge of provenance of a scientfitt ie typically regarded to be as important
as the result itself. In this paper, we provide an overvieweséarch in provenance in databases and dis-
cuss some future research directions. The content of thierga largely based on the tutorial presented
at SIGMOD 2007 [11].

1 Overview of Provenance

The wordprovenancds used synonymously with the wolideagein the database community. It is also some-
times referred to asource attributionor source tagging Provenance mearwgigin or source It also means
the history of ownership of a valued object or work of art ¢edature[26]. The knowledge of provenance is
especially important for works of art, as it directly detémes the value of the artwork. The same applies to
digital artifacts or results that are generated by scierdifiplications. Information about provenance constitutes
the proof of correctness of scientific results and in turtechines the quality and amount of trust one places on
the results. For these reasons, the provenance of a scieasfilt is typically regarded to be as important as the
result itself. There are two granularities of provenancesaered in literatureworkflow (or coarse-grained)
provenanceanddata (or fine-grained) provenancen what follows, we provide an overview of workflow and
data provenance. However, the focus of this paper is on dateepance, which is described in the rest of this
paper (Sections 2 to 4).

Workflow (or coarse-grained) provenance In the scientific domain, a workflow is typically used to merh
complex data processing tasks. workflow can be thought of as a program which is an interconnection of
computation steps and human-machine interaction st¥pekflow provenanceefers to the record of the entire
history of the derivation of the final output of the workflowhd amount of information recorded for workflow
provenance varies. It may include a complete record of theesgce of steps taken in a workflow to arrive
at some dataset. In some cases, this entails a detailedirettre versions of softwares used, as well as the
models and makes of hardware equipments used in the workfiaddition to providing a proof of correctness
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Figure 1: An example of a workflow from [16].

to the final workflow output, workflow provenance can also befuisfor avoiding duplication of efforts; With
appropriate bookkeeping of inputs taken by parts of the flmskit is possible to identify parts of the workflow
that need not be repeated across different execution runs.

Example 1: A simple example of a workflow from [16] is depicted in FigureArrows denote the flow of data,
while boxes are used to indicate data processing steps. widtidlow describes the steps taken to construct
a phylogenetic tree from a set of DNA sequences. The workftansswith step (S1) which downloads a set
of DNA sequences from the GenBank repository. The seconqd(S2) takes the DNA sequences and runs an
external sequence alignment program to generate a seqakgioment. Details of how a sequence alignment
is constructed from multiple DNA sequences are “hidden” oy éxternal program (i.e., the external program
is a blackbox). Step S3 involves interaction with a biolagiEhe biologist examines the sequence alignment
obtained from (S2) and may improve on the quality of the segeelignment output by manually adjusting
gaps inserted by the alignment program. The last step (843 the edited alignment as input and produces a
phylogenetic tree as output. There are in fact many stedviegt in (S4) (see [16] for a detailed explanation).
However, step (S4) abstracts the process of constructinyylagenetic tree from the sequence alignment as
another blackbox. The provenance of an execution of thikflieev may include a record of the version of the
GenBank repository used, the DNA sequences used, the sefamd version of the software used for sequence
alignment, as well as the decisions made by the biologistliting the alignment. L]

As described in Example 1, an external process in step (%)dtved in the workflow. In general, external
processes do not possess good properties for a detailegsianaf the transformation since such details are
typically hidden. Hence, the workflow provenance for thispsis usuallycoarse-grained That is, only the
input, output and the software used by an external proces®aorded.

Data (or fine-grained) provenance:In contrast,data (or fine-grained) provenanagves a relatively detailed
account of the derivation of a piece of data that is in thelteda transformation step. A particular case of data
provenance that is of interest to the database communityaanghich there have been considerable research
efforts is when the transformation is specified by a databjasey. More precisely, suppose a transformation on
a databasé® is specified by quer, the provenance of a piece of datia the output ofQ (D) is the answer to
the following questionWhich parts of the source databasecontribute tot according toQ?

This is the subject of research of [18], where the authorsriees] algorithms for computing data provenance
in the relational framework. We give an example of data pnanee in the relational setting next.

Source database: Department

Employee [ deptid | budget] QueryQ: Outpl{goféj(Dt)- —
[empid[ dept | [BME [ 1200K| SELECT c.empide.deptdbudget LomPidl dept | budget]
e977 | CS CS 670K FROM  Employeer, Departmeny | €657 | BME | 1200K
el32 | EE EE 890K WHERE  e.dept =d.deptid e977 | CS | 670K
e657 | BME MATH | 230K el32 | EE | 890K

Figure 2: An example of a data transformation with SQL.
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Figure 3: (a) Non-AnnotationNA) approach, (b) Annotationrd) approach, (c) a timeline for data provenance
research efforts using eithiBiA or A approach.

Example 2: SupposeD and Q are the database and query, respectively, shown in Figur€h2. result of
executing againstD is also shown on the right of the same figure. The source typ&s7, BME) and
(BME,1200K) contribute to the output tuple (e657,BME,1BD@ccording ta?. In particular, observe that some
source tuples, such as (e132,EE), play no role in contrigut the output tuple (e657,BME,1200K) according
to Q. The basic idea behind the algorithms proposed in [18] isotopute data provenance by analyzing the
underlying algebraic structure of relational queries. vermance is computed and aggregated according to the
underlying algebraic operators used in query on an opebgt@perator basis. ]

Data provenance is the focus of this paper and we shall elebanore on data provenance in subsequent
sections. Readers who are interested in workflow provenaiageind the following references useful: A survey
of provenance research related to scientific data proaeasida scientific workflow systems [5, 19] and a survey
on provenance research in E-science [28].

All of the existing research efforts on data provenance tidop of two contrasting approaches for com-
puting data provenance: (INon-annotation approactis. (2) Annotation approachTechniques for computing
data provenance that use the non-annotation approach tiéowxecution of a transformation functiéh as
it is. See Figure 3(a), which shows a normal executiod)ofThat is, () is executed on an input database to
generate an output database. In order to compute the prizseoéa piece of output data, it is typically the case
that the input and output database, as well as the definifigp, @are analyzed to arrive at an answer. In con-
trast, techniques for computing provenance that use thetation approach (see Figure 3(b)) carry additional
information to the output database. In order to compute tiv@ énformation, the original transformatia is
usually modified to another transformatigh so that when’ is applied on the input database, it generates an
output database that is identical to that generated lapplied on the input database, as well as the additional
information. With this approach, the provenance of a pidaautput data can typically be derived by analyzing
the extra information.

A timeline where the research efforts are classified acngrth the two approaches is tabulated in Figure
3(c). We shall discuss past research efforts (i.e., maigdgarch efforts prior to 2005) and current research
efforts (i.e., mainly research efforts between 2005 and@?08 data provenance in Sections 2 and 3 respectively.
We conclude with some future research directions in Sedtion

2 Data Provenance: Past

As described in Section 1, the problem of computing datagmaxce in the relational framework was studied
in [18]. It is easy to see that the need to compute data pronenapplies not only to tuples of relations, but
also to data that occur at different levels of granularitiea hierarchical or tree-like structure. This observation
was made in [9], where the authors described a hierarchatal miodel and an associated query language for
manipulating data in this hierarchical model. The proveeanf a piece of data, at any granularity, in the result



of a monotone query can be obtained by analyzing the syntadlxeofuery. In [9], the authors also made a
distinction betweerwhy andwhere-provenance The type of provenance studied by [18] is essentially why-
provenance. Where-provenance, on the other hand, is aptestiof the locations in the input database which
contain values where a piece of output data is copied fromsebothe difference between why and where-
provenance, consider Example 2 again. The why-provendrtbe output tuple (e657,BME,1200K) according
to (Q consists of the two source tuples as described in Exampleo@eiker, the where-provenance of the value
“BME”" in the output tuple (e657,BME,1200K) is the locationipted by thedept attribute in the source tuple
(e657,BME). In other words, the “BME” value of the output leifs copied from the “BME” value of the source
tuple (e657,BME) and not from the “BME" value of the sourcpleu(BME,1200K). This is because the query
Q extracts "BME” frome.dept (and notd.deptid). Observe that in contrast to the why-provenance of theuutp
tuple (e657,BME,1200K), the where-provenance of “BME” loé same output tuple completely disregards the
source Department relation.

Prior to [9] and [18], there has been a few similar researébrtsf[31, 32] targeted at resolving the data
provenance problem. The authors of [32] proposed to budduhctionality of computing data provenance into
a database system using the non-annotation approach. mibg¥ation for using the non-annotation approach
was to support provenance tracing in a database visualizativironment, where large datasets are usually
involved. It is therefore infeasible to associate addalomformation to every datum in these datasets for
computing provenance. The main idea in [32] was to allow a teseegister data processing functions and their
corresponding inverse functions in a database system. \Yflien a specific piece of output data to invert, an
inversion planner module within the database system watliéd ivhich inverse function to apply and construct
an execution plan by invoking the appropriate functionhadatabase system. However, since not all functions
are invertible, a user is also allowed to registerak inverseistead. Intuitively, a weak inverse is an inverse
function that approximates provenance; It may only retusnlset of the desired provenance or more than what
is required. A separate verification function is requiredxamine that the answers returned by the weak inverse
are indeed answers to provenance. A fundamental drawbattisofechnique is that the user is required to
provide (weak) inverse functions and their correspondieiification functions. Subsequent research efforts by
[9] and, respectively, [18] that were described earliegrosme this limitation by computing data provenance
through analyzing the syntax and, respectively, algelstaicture of the queries.

The work of [31] first made the idea of using an annotation apgin to compute provenance explicit. They
proposed a polygen model (“poly” for “multiple” and “gen”rftsource”) that is able to track which originating
data sources and intermediate data sources were used tatgesse output data of interest. In [31], operational
definitions on how one can compute the originating sourcddrgermediate sources of an attribute value over
basic relational algebra operators were given.

The polygen idea was followed up by [10], where a similar $efperational definitions (callepropagation
rulesin [10]) for basic relational operators were givein [10], however, the authors made clear that annotations
(and not only originating sources) associated with souata dan be propagated from source to output based
on the propagation rules. Furthermore, the propagatiors ralere designed to propagate annotations based
on where data is copied from (i.e., where-provenance). ticodar, the relationships betwedocations of
data in the input and output database were formalized thrélug propagation rules given in [10]. One of the
problems studied in [10] is thannotation placement problenGiven a query), source databasé®, a view
V = Q(D), and an annotation, denoted asplaced in the view’, decide whether there is location to place
the annotation« in D so that« propagates to the desired location ¥ and nowhere elsdf such a placement
of x in D exists, it is called a “side-effect-free annotation”. Thedy of the annotation placement problem is
important for understanding the bidirectional transpddrmotations between the source database and the view.
The authors showed a dichotomy in the complexity of the aatiwot placement problem for Select-Project-Join-
Union (SPJU) queries: It is NP-hard to decide if there is a-gflect-free annotation for a project-join relational

In [10], the authors had natural join instead of cartesianipct in the set of basic relational algebra operators.



guery even in the special case where the join is always paddtbefore projection. On the other hand, there is
a polynomial-time algorithm for deciding whether there sde-effect-free annotation for SPJU queries which
do not simultaneously contain both project and join opesatin fact, the annotation placement problem was
later shown to be DP-hard in [30]. In [17], the authors shottad many of the complexity issues disappear for
key-preserving operations, which are operations thairré¢he keys of the input relations.

3 Data Provenance: Current

In this section, we describe research efforts that mainfuobetween 2005 and 2007, as shown in Figure
3(c). Our discussion will center around two research ptejddBNotes [4, 15] and SPIDER [1, 14], recently
developed at UC Santa Cruz.

3.1 DBNotes

The work of DBNotes builds upon ideas developed in [10, 3@NDtes is an annotation management system
for relational database systems. In DBNotes, every at&ilalue in a relation can be tagged with multiple an-

notations. When a query is executed against the databas#ations of relevant attribute values in the database
are automatically propagated to attribute values in theltre$ the query execution. The queries supported by
DBNotes for automatic annotation propagation belong tagrfrent of SQL queries that corresponds roughly to
select-project-join-union queries. In defaultexecution mode, annotations are propagated based on wdtare d

is copied from (i.e., where-provenance). As a consequeheeery attribute value in the database is annotated
with its address, the provenance of data is propagated diiamg input to output, as data is transformed by the

guery. An example of annotations propagated in the defaaitrmar is shown below:

Source databasl: Department

- QueryQ: Output of Q(D):
Err:p?ilgyesept deptid _judget | SELECT e.empid,e.dept,d.budget [empid [dept budget ]
BME (b1) |1200K (2) FROM Employeee, Department! 6657 5 JBME (aq)L200K (2)
€977 @1)CS (@2) CS (3) |670K (bs) WHERE e.dept =d.deptid e977 (1)CS @2) B70K (bs)
132 (3)EE (a4) EE (b5) ~ B90K (bo) PROPAGATE  default 0132 (5)EE (1) BIOK (bo)
€657 (5)BME (ag)  [MATH (b7)230K (bs)

In this example, every attribute value in the source ratastiemployee and Department, is annotated with
a unique identifier. For instance, the attribute value 679kKrinotated with the identifiéy. The queryQ has
an additional PROPAGATE default” clause, which means that we are using the defagit\dion mode as
explained earlier. By analyzing the annotations that aopagated ta) (D), we can conclude that the value
“BME”in Q(D) was copied from “BME” in the Employee relation (and not theMB” in Department relation).
If the SELECT clause of@ had been é.empid,d.deptid,d.budget” instead, then the annotation associated with
“BME” in Q(D) would beb; instead ofag. Hence, equivalent queries may propagate annotatioreretifly.
This presents a serious difficulty as it means that the atinoga(or provenance answers) that one obtains in the
result is dependent on the query plan chosen by the databgsee DBNotes resolves this problem through a
novel propagation scheme, called thefault-all propagation scheme. In this scheme, all annotations of/ever
equivalent formulation of a query are collected togetheansgquently, propagated annotations are invariant
across equivalent queries. This scheme can thus be viewthd a®st general way of propagating annotations.
In our example, the “BME” value irQ(D) will consist of both annotationsg and b, under the default-all
scheme. At first sight, the default-all scheme seems iffEabecause the set of all equivalent queries is infinite
in general. In [4], a practical and novel implementationt #aids the enumeration of every equivalent query
is described. The key insight is that for monotone relafi@ngeries, all relevant annotations can in fact be
determined by evaluating every query in a finite set of gger&uich a finite set can always be obtained, and is
not too big in general. DBNotes also allows one to definstompropagation schemes. In this scheme, the user
can specify where annotations should be retrieved fromtirglations. The custom scheme is especially useful
when the user is, for example, only interested in retriexdngotations from a particular database, perhaps due



to its authority, over other databases. In [15], the quengleage of DBNotes was extended to allow querying
of annotations. Techniques were also developed to exptairptovenance and flow of data through query
transformations via the analysis of annotations.

Extensions to DBNotes.In DBNotes, as well as [10], annotations can only be placed oalumn of a tuple

of a relatiorf. In other words, annotations can only be associated wittbai# values only, and not tuples or
relations. In [21], an extension is made so that annotatbansbe placed on any subset of attributes of a tuple
in a relation. Acolor algebrathat can query both values and annotations is also descriliesl showed that
for unions of conjunctive queries, the color algebra is cletepwith respect taolor relational algebra queries

A color relational algebra querys a query that when applied on an color database (i.e.jagefatith extra
columns for storing annotations) returns another coloalukzdée. They also showed that every operator in the
color algebra is necessary for the completeness resultltb ho[20], a similar completeness result is proven
for full relational algebra instead of unions of conjunetigueries; The color algebra of [20] is shown to be
complete with respect to color relational algebra queries.

In [29], the idea of associating annotations with data ishier extended to allow annotations to be placed
on an arbitrary collection of data in a database. A query é&lus capture the collection of data of interest
and the query is then associated with the desired annataitioa separate table. Similarly, one can associate
a collection of data with another collection of data by usiwg queries that capture the collections of data of
interest respectively, and then associating the querggther in a separate table.

Expressivity of languages that propagate annotationsSince many languages that manipulate annotations (or
provenance) were proposed, a natural question is the catiyemexpressive power of these query languages.
For example, one natural question is the following: How dixespropagation scheme for originating sources
as proposed in [31] compare with the default propagatioemmehof DBNotes? Is one more expressive than the
other? The work of [7] addressed this question. They shohaithe default propagation scheme of DBNotes
is as expressive as the propagation scheme for originatimgas proposed in [31]. To show this result, they
defined a query language that manipulates annotations sisci@ss citizens”, and showed that the propagation
schemes of [31] and DBNotes are equivalent in expressiveptma certain class of queries in their language.

3.2 SPIDER

In this section, we describe a recent work on computing pramee over schema mappings that uses the non-
annotation approach.

Schema mappingare logical assertions of the relationships between aanostof a source schema and an
instance of the target schema. They are primary buildingksidor the specification of data integration, data
exchange and peer data management systems. A fundamentikmprin integration systems is the design and
specification of schema mappings, which typically takeg afitime and effort to get it right [3, 24].

SPIDER [1, 14] is a system that facilitates the design of nraypby allowing mapping designers to un-
derstand, debug, and refine schema mappings at the levelpgfimga, through the use of examples. The idea
behind SPIDER is very much like debuggers for programmimguages which allow programmers to under-
stand, debug, and refine their programs by running theirrprog on some test cases. The main approach that
SPIDER uses to explain the semantics of mappings is throaegbrigitions of the provenance (resp. flow) of
data in the target instance (resp. source instance) thrchaghs of possibly recursive mappings. These descrip-
tions are calledoutesand intuitively, they describe how data in the source argetanstances are related and
constrained via mappings. In SPIDER, a mapping designeeither display routes ending at selected target
data (i.e., trace the provenance of target data) or disglates starting at selected source data (i.e., trace the
flow of source data). We describe an example of routes next.

2The same applies to [31], where originating sources arecited with attribute values.



Mappings:

. . . . Target instancd’
Source instancé: for c in CardHolders=- existsa in Accounts_anctl in

- Accounts

CardHolders Clients wherea.AccNo = c.AccNo ana.accHolder = ["accNo | creditLine | accHolder |
| acho| limit | ssn | name| c.ssn anal.ssn = c.ssn and.name = c.name  nf:) 123 I D1

123 $15K | ID1 | Alice . . . . A L ID2
|Depende|nts | | | for d in Dependents=- existscl in Clients Clienlts 2
| accNo | ssn | name | wherecl.ssn = d.ssn cl.name = d.name m)
| 123 | ID2 | Bob | for cl in Clients=- existsa in Accounts ID1 | Alice

ID2 | Bob
wherea.accHolder = cl.ssn n{s)

The source schema consists of two relational schemas, Gliteltd and Dependents, and the target schema
consists of two relational schemas, Accounts and Clienter& are three mappings,;, me andmsg, written
in a query-like notation as shown in the middle of the figurevah Intuitively, the first mappingn, asserts
that for every tuple in the CardHolders relation, there texastuple in the target Accounts relation and a tuple
in Clients whose correspondiragcNo, accHolder, ssn andname values are equal to theccNo, ssn, ssn,
andname values, respectively, of the Cardholders tuple. The mappin asserts that every Dependents tuple
has a corresponding Clients tuple whase values coincide. The last mapping; is a constraint on the target
instance that says that the existence of a Clients tupldempiie existence of an Accounts tuple whereste
value of the former is equal to tleecHolder value of the latter tuple.

Given the schemas and the mappings, a mapping designer slayoninderstand the mappings by executing
them against a source instantehown on the left of the figure above. A target instariddat conforms to the
target schema and also satisfies the mappings is shown oigltte $uch a target instance may be obtained
by executing the schemas and mappings on a data exchangmststh as Clio [25] or, by directly reasoning
about the semantics of the mappingsJirthe valued., Lo and A; represent possibly distinct unknown values
for credit limits and account number. Since an account camaareated without an account number, a mapping
designer may probe oA, to understand howi; was formed in the exchange process. In response to the probe,
SPIDER displays a route (shown below), starting from a sotuple in/ that ultimately leads to the target tuple
in J that contains the probed; .

Dependents(123,1D2,BoB¥> Clients(ID2,Bob)=% Accounts@ds,Ls,1D2)

Intuitively, the route explains that the Dependents tupée,([Bob) in! leads to the Clients tuple (i.e., Bob) in
J via mappingms, which in turn leads to the ID2 Accounts tuple.rvia mappingns. Although not illustrated
here, SPIDER also displays the bindings of variables:inandmg that were used to derive each tuple in the
route. By analyzing the route, a mapping designer may ed#hat the account number 123 in the Dependents
tuple was somehow not copied over to the target and may hefioe or correct the mappings in the process.
The example above was kept simple for ease of expositionedlity, mappings are usually not as simple
as those shown in this example. They are usually larger gridatfyy more complex. A major difficulty in
computing routes is to reason about chains of possibly se@mappings among schemas. Furthermore, the
number of routes to illustrate to a mapping designer in nespado a single probe may be overwhelming. In [14],
an algorithm for computing routes that overcomes thesediffes has been developed. Their algorithm encodes
the set of all routes, even when there may be exponentiallyynia compact polynomial-size representation.
A demonstration of SPIDER is described in [1].
How-Provenance.Routes are different from why-provenance in that they nd¢ describe which input tuples
contribute to the existence of an output tuple, but &lse the input tuples lead to the existence of the output
tuple. Thus, compared to why-provenance, it is a more @etakplanation of the existence of an output tuple.
In a recent paper [23], the authors described a method whe@relvenance can be described usingeairing
of polynomialsin the context of datalog queries and introduced the teom-provenanceSemirings are similar
to routes of SPIDER in that they capture the input tuples toatribute to an output tuple, as well hew
they contribute to that output tuple. For example, it A, B) be a binary relation with three tuples, t,
andts, wheret; = (1,2), to = (1,3) andts = (2,3) and letRy(B, C') be another binary relation with three



tuplesty, t5 andts, wherety = (2,3), t5 = (3,3) andtg = (3,4). The result of the queryls ¢ (R: > R3)
consists of three tuple€l, 3), (1,4), (2, 3),(2,4). The provenance polynomial for the output tuple3) is

tity + tots, which describes that the output tugle 3) is witnessed by, andt, or, t2 andts. On the other
hand, the why-provenance (f, 3) according to the query is simply the set of tup{es, ¢2, t4, t5}. Algorithms

for calculating provenance semirings for datalog queriesewdescribed in [23]. In [22], an application of
provenance semirings is described in collaborative datdrgl Updates that are propagated along peers carry
along provenance semirings. These propagated semiriagsubsequently utilized to trace the derivations of
an update in order to determine whether an update shouldtid&®dilbased on the trust conditions specified by
participants of the data sharing system.

4 Data Provenance: Future

We have described some major research efforts in data progerin the past two decades. In this section, we
describe some possible future research directions.

Most research efforts on data provenance have focused sorieg about the behavior of provenance and
keeping track of annotations or metadata through SQL gsieli¢hile SQL queries are fundamental building
blocks of many database applications, knowing how to readmut the provenance and flow of data through
SQL queries alone is still insufficient for a complete endktl tracking of the provenance and flow of data in
many database applications. For example, a Web applicizdiis powered by a database backend may only use
SQL queries to retrieve data from (or store data into) theetgithg database system. Data that is retrieved may
still undergo various transformations (e.g., cleansinfoomatting transformations) before they are displayed
on a Web page. To make matters worse, many Web applicatiday {(e.g., mashups) are based on other Web
applications where information is extracted and integr#teugh public application programming interfaces and
appropriate programming languages. In particular, thegs® by which information is extracted and integrated
is typically not described by SQL queries. Therefore, a majsolved challenge for data provenance research
is to provide a uniform and seamless framework for reasoabaut the provenance (and flow) of data through
different data transformation paradigms. We list threeeatspof research on data provenance next that would
make progress towards resolving this challenge.

Web applications and many other systems such as data waeshaxtract-transform-load systems behave
very much like workflows, where data typically undergoesqusace of transformations in different paradigms
(e.g., SQL gueries, C programs or Perl scripts.). Henceappeach towards a solution for the above mentioned
unsolved challenge is to examine whether one can combineskarch efforts of workflow provenance and data
provenance in a uniform manner. So far, the research effartgorkflow provenance and data provenance have
been somewhat independent and disconnected. For the teadthof research to converge, extensions to the
formalism for workflow provenance are needed so that nodatsrépresent external processes in a workflow
need not be treated as a blackbox. In other words, whenewsilj®, one should be able to drill down and
analyze the provenance of data generated by external pnegrahich are commonly used in workflows and
typically abstracted as blackboxes by current technigoresdmputing workflow provenance. On the other front,
techniques for computing data provenance need to be extéadendle constructs of more powerful languages
(e.g., aggregates, iterators, and side-effects etc.).céntepromising research effort [12, 13] uses dependency
analysis techniques, similar to program slicing and pnogaaalysis techniques from the programming language
community, to analyze provenance over more complex datafyasries that includes relational queries with
grouping and aggregates. Another approach towards a mmifiaamework for analyzing data provenance is
to abstract different data transformation paradigms ubigfer-level declarative formalisms such as schema
mappings. However, similar to the discussion earlier, nraggwill need to be enriched to model constructs of
more powerful languages such as aggregates, iteratoesefetts etc.

Another research direction that would make progress toswhelunsolved challenge is to develop techniques
for reasoning about or approximating the provenance ofttiatas generated by programs through the analysis



of the “blackbox behavior” of programs. In other words, ewdren the details of a program may not be available,
one should still be able to derive the provenance of datarg@tkby the program to a certain extent. Methods
for resolving this challenge will be extremely useful in gtiee because in many cases, even when the details of
an external program are available, they are typically taomex to be amenable to a systematic analysis.

The last research direction concerns archiving. This ip@ that bears close relationship to provenance and
has not been discussed so far in this paper. Databases armdaxkvolve over time. Necessarily, a complete
record of provenance entails archiving all past states @fetfolving database so that it becomes possible to
trace the provenance of data to the correct version of thebdae or trace the flow of data in a version of
the database that is not necessarily the most recent. Amghis especially crucial for scientific data, where
scientific breakthroughs are typically based on infornmatibtained from a particular version of the database.
Hence, all changes or all versions of the database must lyedotumented for scientific results to remain
verifiable. There have been some research efforts on anghsgientific datasets [6, 8]. However, two major
challenges remain: (i) The first is to provide techniquesefificiently archiving versions of databases whose
schema may also evolve over time. At the same time, the atauof the archive should still retain the semantics
of data and relationships between entities across diffeensions of data as far as possible so that the archive
can be meaningfully analyzed later. (ii) The second is twipkecompanion techniques to efficiently recover a
version of the database from the archive obtained fromn@rementally update the archive with a new version
of data, as well as provide techniques to discover or andgrpgoral-related properties in the archive and how
entities evolve over time.

Recently, a number of applications of provenance have esdergthe context of probabilistic databases [2],
schema mappings [14], and updates [22]. These applicatimpsre extensions to prior techniques for comput-
ing provenance. An interesting research direction woultbbdiscover whether there are other applications of
provenance that would require significant extensions tstiexj technigues or a completely new framework for
computing provenance. For example, a recent workshop orepamce [27] suggests that security, information
retrieval, dataflow or extract-transform-load scenarios &e some potential applications to investigate.
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