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Abstract 
In this paper, we propose a challenging class of problems 
for Cognitive Systems reasoning in spatio-temporal 
environments.  Consider a safe area in a military 
engagement.  The safe area refers to a region in the 
environment.  The size, shape, and location of this region is 
a function of the goals and capabilities of the other agents in 
the environment.  Furthermore, this context will change 
over time and thereby changing the reference of this 
abstraction.  We call such regions context-dependent spatial 
regions.  Through an analogy with the qualitative 
abstractions used in the design and analysis of engineered 
systems, we explore this representational problem and some 
possible solutions. 

Context-Dependent Spatial Regions  
Natural collaboration between humans and mobile robots 
requires both partners to communicate with spatial 
language.  Many regions referred to by people are defined 
not solely by their geometry but also by their context (e.g., 
the functional use of the space).  Consider the following 
regions: the front of a classroom (Figure 1), neighborhoods 
in a city (Figure 2), and safety in a military engagement 
(Figure 3). 
 We call such areas context-dependent spatial regions 
(Hawes et al. 2012). To identify the front of a classroom, 
one must recognize the boundaries of the classroom (e.g., 
the walls), the objects within the room (e.g., desks and 
whiteboards) as well as their functional use (e.g., students 
sit at the desks oriented toward a teacher).  These regions 
are important for communication because they are tied to 
the goals and intentions of the actors in the environment.  
If someone wants to present, they stand in the front of the 
classroom. Neighborhoods are functional, geographic areas 
of cities.  They provide a heuristic for people in terms of 
businesses, real estate prices, and crime.  The Tenderloin is 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

 

only a few blocks from Union Square, but in one you will 
find a high crime rate and inexpensive South Asian food, 
and in the other you will find high-end retail.  Further 
complicating matters, the context that defines these regions 
is dynamic.  Consider safety in a military engagement.  An 

Figure 1: The front of the classroom depends on 
locations and orientations of the desks and other 

objects in the room. 

Figure 2: Neighborhoods in and around downtown 
San Francisco including Little Saigon, Tenderloin, 

and Union Square. 



agent moving to safety must consider the capabilities, 
knowledge, and goals of the other participants.  For 
example, in Figure 3, if the friendly tanks are advancing on 
the enemy tanks, the enemies may retreat and the scout is 
already safe.  Although they operate at a different time 
scale, there are dynamics in the previous two examples as 
well. The locations of the desks in a classroom or the 
landmarks of a city will change over time. 

 We hypothesize that these regions play an important role 
in describing continuous space and time.  Therefore, 
including representations of these regions should improve 
the performance intelligent systems. Context-dependent 
spatial regions have been used to improve human activity 
recognition in a kitchen environment (Karg and Kirsch 
2012).  Given their functional nature, context-dependent 
spatial regions should be applicable to different reasoning 
tasks (e.g., planning, communication, intent recognition).   
Furthermore, learning the regions of a single environment 
is not very useful, because the grounding of the abstraction 
must change with the environment.  Instead, we desire 

solutions that include grounding context-dependent spatial 
regions in new and dynamic environments. 

Abstracting Continuous Systems 
To gain insight into this problem, we consider the 
abstractions defined for reasoning about continuous 
systems.  Consider a bouncing ball.  It falls with increasing 
speed until it hits the ground.  Then, it reverses direction 
and rises with a negative acceleration until it has zero 
velocity and begins to fall again.  This description is in 
terms of abstractions in space and time.  In the late 1970s 
and early 1980s, the field of qualitative reasoning was 
started to formalize this type of reasoning.  The majority of 
the field focused on algorithms for predicting possible 
behaviors of engineered systems and how such predictions 
could support other reasoning tasks.  The spatial 
environment introduces additional challenges of multiple 
dimensions.  Consequently, this led to the rich field of 
qualitative spatial reasoning (Cohn and Renz 2008).  Much 
of the research in this field has focused on the definition of 
calculi and their inferential properties.  In this section, we 
discuss the properties of these abstractions (Figure 4) to 
explore the representational challenge of context-
dependent spatial regions. 
 Abstraction of each type of system begins with the 
mathematical formalism.  Differential equations are a 
common representation of engineered systems, and 
geometry is typically used to represent space.  Differential 
equations and geometry are defined over real numbers, and 
each can be abstracted into jointly-exhaustive pair-wise 
disjoint sets of abstractions.  Qualitative differential 
equations (Kuipers 1994) abstract each variable into a 
quantity space consisting of landmarks and intervals.  The 
coarsest quantity space is the sign algebra consisting of 
three possible values: Q- if the variable is negative, Q0 if 
the value is 0, and Q+ if the value is positive.  In spatial 
reasoning, researchers typical define relations between 
pairs and triples of entities, such as Region Connection 
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Figure 4: Alignment of properties of abstractions used in analysis of engineered systems and spatial 
environments. 

Figure 3: If the Scout was ordered to safety, it 
would need to reason about the future actions of the 

Friendly and Enemy Tanks. 



Calculi (Cohn et al. 1997) that describe topological 
relationships.  One property of both of these abstractions is 
that they lead to ambiguous inferences.  Without additional 
information, we cannot know if a positive number summed 
with a negative number is positive, negative or zero.  
Similarly, if region ‘a’ is disjoint with region ‘b’, and 
region ‘b’ is edge connected with region ‘c’, then ‘a’ is 
either disjoint from, edge connected, partially overlapping, 
a proper part of, or a tangential proper part of region ‘c’.  
Abstractions also lead to behavioral ambiguities.  In our 
bouncing ball example, there is an ambiguity concerning 
the relationship of end point of the upward trajectory and 
the initial release point.  In spatial reasoning, consider the 
example in Figure 3.  If the scout is moving toward the 
friendly tanks and the enemy tanks are moving toward the 
scout, the scout may or may not reach safety in time.  
These ambiguities pushed researchers to explore methods 
integrating the abstractions with the underlying 
quantitative space.  For reasoning about differential 
equations, Kuipers (1994) introduced bounding functions 
that create a quantitative envelope around an unknown 
underlying differential equation.  Forbus et al. (1991) used 
a metric-diagram/place-vocabulary to maintain tight 
integration between the underlying geometry and the 
abstraction space used for inference. 
 Representation cannot be separated from reasoning.  
Models of engineered systems are created to understand 
their behavior.  In design, engineers evaluate a model of 
their design against requirements (e.g., accelerating 0-60 
mph in under 5 seconds) in some scenario, that is, a model 
of how a device would be used (e.g., the driver would shift 
gears at particular times on a dry level road).  Spatial 
representations are used for many tasks (e.g., navigation, 
planning, database retrieval). For example, when planning 
a route for a mobile robot, it is necessary to consider the 
goals and actions of other agents in the environment to 
avoid collisions.  This task dependence has two 
consequences: (1) additional knowledge is added to the 
underlying mathematical formulism, and (2) often, the 
abstractions used change during the course of the inference 
task.  We explore this second point a bit more in the next 
paragraph.  
 Dynamic interpretation occurs when the abstractions 
change meaning during inference.  In qualitative reasoning 
about engineered systems, this occurs through landmark 
introduction and corresponding values (Kuipers 1994).  
When simulating the behavior of a variable x, if its 
derivative goes to zero at time point t0, the value of that 
variable may be an extrema of the function (shown in 
Figure 5).  Consequently, by adding a landmark lnew to the 
x’s quantity space and continuing simulation, our 
representation is better able to capture the dynamics of the 
function. For example, by creating a new landmark at the 
apex of the ball’s bounce, this representation now 

distinguishes between bouncing ball models with and 
without energy loss. The representation is dynamic 
because, before t0, the value of x is the interval from (0, ∞), 
but after t0, the value of x is (0, lnew).  Corresponding values 
provide another example of dynamic interpretation.  
Corresponding values refine a constraint during qualitative 
simulation.  Consider the following equation, a + b = c.  
Corresponding values for this equation are triples of 
landmarks that satisfy the constraint, e.g., (ai,bi,ci).  These 
can be added to a constraint during simulation, thereby 
increasing its discrimination for future states. 
 Dynamic interpretations are also being explored in 
spatial environments.  For example, Zender et al. (2007) 
describe a socially aware robot tasked with following a 
human.  The desired following location of the robot with 
respect to human changes with the context.  For example, 
when the human approaches a door, the robot stays a bit 
further back to allow the human to open it.  Also, when 
moving in a corridor, it is easier to predict the motion of 
the human the robot is following as well as the motion of 
other humans that are potentially obstacles.  The desired 
location for the robot follower is an example of a context-
dependent spatial region. 
 In the next section, we describe some existing 
approaches for dynamic interpretation of spatial 
abstractions, and their limitations. 

Existing Approaches 
Early work identifying the need to incorporate functional 
and geometric knowledge into a single representation 
comes from linguistics (Coventry 1998).  Potential field 
models (Kelleher and Costello 2008) consider the context 
of distracting objects to both understand and generate 
locative expressions (e.g., the ball near the box).  Locative 
expressions explicitly state the important objects in the 
environment (e.g., ball and box).  This differs from 

Figure 1: At to, a new landmark, lnew, is added to x’s 
quantity space.  Before to, the value of x is the 
interval (0, ∞). After to, x is between 0 and lnew. 



context-dependent spatial regions that incorporate other 
objects in the environment that are not included in the 
natural language (e.g., the desks help define the front of the 
classroom). 
 The robot follower from the previous section uses a 
hand authored task-specific encoding for the desired 
following location.  One of the original motivations of 
abstraction was to increase the robustness of reasoning 
systems.  Unfortunately, hand authored representations are 
typically brittle with respect to environment changes.  
Furthermore, the system lacks a general mechanism for 
reasoning about space.  Thus, each new spatial concept 
will have to be encoded and refined by human engineers.  
Our challenge in this paper is to define an extensible 
spatial representation system to enable AI systems to 
improve their performance and extend their range of 
applicable tasks over time. 
 To alleviate brittleness, researchers train probabilistic 
models from human labeled examples.  For example, 
Montello et al. (2003) learn a model for which points on a 
map are located within downtown Santa Barbara.  One 
property of context-dependent spatial regions is that they 
change with the context.  Unfortunately, most learned 
models require lots of training examples, and when the task 
or environment changes, a new model must be learned.  
One promising approach around this problem is to transfer 
the learned models to new environments.  Karg and Kirsch 
(2012) use types and orientation of objects to recognize 
human activities in a new domestic environment. 
 Computational models of analogy provide another way 
of transferring instance-based definitions of regions.  
Lockwood et al. (2005) used analogy to select the 
appropriate spatial preposition for a new scene 
incorporating functional and geometric knowledge.  Hawes 
et al. (2012) used anchor points, symbolic descriptions 
linking conceptual entities to perceived entities, to define 
context-dependent spatial regions in a classroom, and 
analogy to identify these regions in a new classroom.  
While analogy is promising because it enables learning 
from a single example, it is an open question to define an 
appropriate set of compositional spatial primitives to 
ground context-dependent spatial regions. 

Importance of Dynamic Representations 
The poverty conjecture states that “there is no problem-
independent, purely qualitative representation of space or 
shape” (Forbus et al. 1991).  We hypothesize that dynamic 
representations provide a way of incorporating the context 
of the problem into the abstract representation.  We are 
motivated by the dynamic representations using in 
qualitative reasoning about engineered systems: landmark 

introduction and corresponding values.  These techniques 
expanded the expressivity of qualitative simulation. 
 Intelligent systems are beginning to encode dynamic 
representations for context-dependent spatial regions.  By 
incorporating the goals, objects, and actions along with the 
geometry, current systems are able to identify fronts of 
rooms, follow humans appropriately, and recognize 
activities in domestic spaces.  The challenge facing this 
community is to create a vocabulary that enables natural 
description of behavioral sequences supporting a range of 
inference tasks.  While the meaning these abstractions is 
static, their referents in the spatial world change over time.  
For example, an agent would form the same plan to move 
to safety in many different environments, but the 
grounding of that region would differ depending on the 
context.  Furthermore, if our reasoning systems could learn 
new types of regions from a few examples, that would 
dramatically decrease system development time while 
increasing the range of tasks for a given intelligent system.  
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